Systematic Review of Lutein and Zeaxanthin and the Maintenance of Vision

B. Eisenhauer¹, S. Natoli¹, J. Kwok¹ and V.Flood²

 Food & Nutrition Australia, Sydney NSW 2000
 Westmead Hospital, Western Sydney Local Health District and The University of Sydney, Faculty of Health Sciences, Charles Perkins Centre

Qualifications of the author(s) and peer reviewer(s) Bronwyn Eisenhauer – Bachelor of Nutrition & Dietetics (Honours) Sharon Natoli – Bachelor of Science, Bachelor of Nutrition & Dietetics, Graduate Diploma of Business

Janice Kwok – Bachelor of Nutrition & Dietetics (Honours), Master of Public Health

Peer Reviewer - Professor Victoria Flood - Bachelor of Applied Science, GradDipNutr&Diet, Master of Public Health, PhD

Table of Contents

Tables & Figures	
Executive Summary	
1. Description of the food-health relationship	
1.1 Description of the food/property of food	
1.2 Description of the health effect	
1.3 Description of the proposed food-health relationship	
2. Retrieval of scientific evidence – systematic review based on the original statement of the second	ginal literature only11
2.1 Search Strategy	
2.2 Inclusion and Exclusion Criteria	
2.3 Final list of included studies	
3. Tabulation of data from the final list of included studies	
3.1 Summary of key information from included studies	
4. Assessment of study quality	
4.1 Quality Appraisal of Individual Studies	
4.1.1 Clearly stated hypothesis	
4.1.2 Minimisation of bias	
4.1.3 Adequate control of confounding	
4.1.4 Study participants' background diets and other relevant lifes	tyle factors38
4.1.5 Study duration and follow-up adequate to demonstrate the l	nealth effect38
4.1.6 The statistical power to test the hypothesis	
5. Assessment of the body of evidence and conclusion	
5.1 Consistency of association	
5.3 Biological Plausibility	59
6. Applicability to Australia and New Zealand	61
Appendix A Health Canada Quality Appraisal Checklists for Individual Stud	dies63

Tables & Figures

Table 1: Lutein and Zeaxanthin Content of Common Foods ³	6
Table 2: List of included randomised controlled trials based on the inclusion and exclusion criteria	14
Table 3: List of included cohort studies based on the inclusion and exclusion criteria	15
Table 4: Summary of key information from included intervention studies reporting the effect of L/Z on visual performance and AMD.	17
Table 5: Summary of key information from included observational (cohort) studies reporting the effect of L/Z on each and late AMD.	<u>arly</u> 25
Table 6: Summary of individual study quality based on the Health Canada quality appraisal tool for intervention studies	35
Table 7: Summary of individual study quality based on the Health Canada quality appraisal tool for prospectiveobservational studies	36
Table 8: Rating of consistency in direction of effect for early age-related macular degeneration (AMD)	39
Table 9: Rating of consistency in direction of effect for intermediate and late age-related macular degeneration (A	<u>MD)</u> 40
Table 10: Rating of consistency in direction of effect for intervention studies for late age-related macular degeneration (AMD)	<u>ation</u> 41
Table 11: Rating of consistency in direction of effect of LZ on visual acuity	42
Table 12: Rating of consistency in direction of effect of LZ on visual acuity	43
Table 13: Summary of study findings from observational studies on early AMD	44
Table 14: Summary of study findings from observational studies on intermediate and advanced AMD	49
Table 15: Summary of study findings from randomised controlled trials on late/advanced AMD	55
Table 16: Summary of study findings from randomised controlled trials on visual acuity	57
Table 17: Summary of study findings from randomised controlled trials on contrast sensitivity	58

Figure 1a: 2D chemical structure of lutein molecule	_Figure 1b 2D chemical structure of zeaxanthin molecule7
Figure 2: PRISMA Diagram showing the study review	and selection process13
Figure 3: Comparison of the Main Effects of Lutein + 2	Zeaxanthin vs No Lutein + Zeaxanthin, Stratified by Quintiles of
Dietary Intake of Lutein + Zeaxanthin, on Progression	to Advanced Age-Related Macular Degeneration (AMD) ³⁴ 42

Executive Summary

The objective of this systematic review was to assess whether dietary intake of lutein and zeaxanthin (L/Z) helps maintain vision in adults.

Lutein and zeaxanthin, are xanthophyll carotenoids naturally present in food, especially in dark green leafy vegetables, such as spinach and kale, as well as eggs – in the egg yolk. Eggs have been found to be a particularly bioavailable source of these carotenoids.

With their isomer meso-zeaxanthin, L/Z accumulate in the macula, the central part of the retina responsible for fine detail and central vision. Given their high concentration in this area of the body, research has investigated their potential role in eye health and vision.

A literature review was conducted in the PubMed and CINAHL databases, in May 2018, limited to human cohort and randomised controlled trials. Manual searches were also performed on the reviewed full text papers from the original search. Relevant medical subject heading (MeSH) terms and keywords included: lutein, zeaxanthin, xanthophyll/s, antioxidant/s or carotenoid/s in conjunction with the following: vision, visual performance, visual function, visual acuity, contrast sensitivity, age-related macular degeneration, age-related macular degeneration (incidence and progression). This review was not concerned with studies in which participants had pre-existing eye disease (other than AMD) including cataracts, retinitis pigmentosa and diabetic retinopathy.

Using the inclusion and exclusion criteria the 762 publications from the original search were reduced to 16 included studies. These 16 studies were 8 cohort studies and 8 randomised controlled trials (RCTs). The cohort studies investigated the relationship between dietary L/Z intake and incidence and/or progression of age-related macular degeneration (AMD) in populations including Blue Mountains Eye Study (BMES) cohort, the Rotterdam cohort, the Nurses Health Study (NHS) cohort, the Health Professionals Follow Up Study (HPFS) cohort and the Atherosclerosis Risk in Community (ARIC) cohort. All cohort studies rated as high quality using the Health Canada Quality Appraisal tool.

The 8 RCTs investigated the effect of supplemental L/Z on AMD progression and/or measures of vision including visual acuity and contrast sensitivity. All RCTs rated as high quality using the Health Canada Quality Appraisal tool.

Cohort studies did not consistently find a statistically significant favourable effect of L/Z intake on early AMD, however when analysis was isolated to individuals at high genetic risk of AMD a 22% reduction in risk was found in the highest levels of intake. High quality cohort studies inconsistently found a favourable effect of L/Z intake on intermediate and advanced AMD – the types of AMD most likely to result in vision loss. In a study investigating genetic risk as an effect modifier, the highest tertile intakes of L/Z were non-significantly associated with an approximately 35% risk reduction in advanced AMD while there was a significant reduced risk of any AMD. Cohort studies may have been subject to residual confounding and/or difficulties in quantifying L/Z intake biasing their findings towards the null.

The AREDS2 RCT found individuals with a background dietary L/Z intake of <1428µg/day benefitted for the 12mg L/Z supplement (HR of 0.74 (95% CI, 0.59-0.94, p=0.01)). Other RCTs included in the systematic review consistently showed L/Z supplementation enhanced contrast sensitivity and visual acuity (although VA results did not always reach statistical significance).

The relationship between L/Z and vision is biologically plausible. Evidence demonstrates the macular pigment has blue light-filtering properties as well as anti-oxidant and possibly anti-inflammatory actions.

Overall, while results from observational cohort studies to date have been inconsistent, the evidence from high quality intervention studies on late AMD and visual performance including contrast sensitivity and visual acuity consistently show favourable effects of L/Z on these health effects suggesting a causal effect. Furthermore, the relationship between L/Z and maintenance of vision has high biological plausibility and levels of intake are possible in the current Australian and New Zealand food environment.

The following systematic review is set out in a way that directly addresses the required elements outlined in Schedule 6 of Standard 1.2.7 of the Food Standards Code.

1. Description of the food-health relationship

S6-2(a) A description of the food or property of food, the health effect and the proposed relationship between the food or property of food and the health effect.

1.1 Description of the food/property of food

The food constituent/s that are the subject of this systematic review are lutein and zeaxanthin. Lutein and zeaxanthin, are xanthophyll carotenoids naturally present in food, especially in dark green leafy vegetables, such as spinach and kale, as well as eggs – in the egg yolk. Eggs contain both lutein and zeaxanthin – in approximately a 1:1 ratio¹. Following extraction, carotenoids in egg yolks can be separated and quantified using several analytical techniques. The most commonly used technique used is high performance liquid chromatography (HPLC)². Carotenoids cannot be synthesized in vivo, and they therefore must be obtained from dietary consumption.

Table 1 includes a list of commonly consumed foods including their lutein and zeaxanthin content.

Food Lutein and zeaxanthin ($\mu g/100g$) Kale, cooked 18246 12197 Spinach, raw Spinach, cooked 11308 Parsley 5562 Peas, green (boiled) 2593 Brussels Sprouts (boiled) 1541 Pistachio nuts, raw 1404 Egg yolk, raw 1094 1079 Broccoli (cooked) Asparagus, cooked 771 Frozen corn (boiled from frozen) 684 504 Egg whole, raw 353 Egg whole, cooked (hard-boiled) Avocado (all commercial) 270 Orange (all commercial) 129

Table 1: Lutein and Zeaxanthin Content of Common Foods³

Lutein and zeaxanthin are xanthophylls biochemically distinct from other carotenoids due to the presence of hydroxyl groups located at each end of these molecules.

Figure 1a: 2D chemical structure of lutein molecule

Figure 1b 2D chemical structure of zeaxanthin molecule

Reference: National Center for Biotechnology Information. PubChem Compound Database; CID=5281243, https://pubchem.ncbi.nlm.nih.gov/compound/5281243 (accessed June 8, 2018). National Center for Biotechnology Information. PubChem Compound Database; CID=5280899, https://pubchem.ncbi.nlm.nih.gov/compound/5280899 (accessed June 8, 2018).

There are more than 600 carotenoids found in nature, of which approximately 50 are consumed in the typical diet, and only 14 have been detected in serum⁴. Of these 14, only lutein and zeaxanthin and their metabolites are located in the macula of the eye where they are found at the highest concentrations of anywhere in the human body, suggesting an important functional role for these molecules in the eye⁴.

Lutein and Zeaxanthin in the retina of the eye - the macula pigment (MP)

Lutein and zeaxanthin, with their isomer meso-zeaxanthin accumulate in the macula, the central part of the retina responsible for fine detail and central vision. At this location they are referred to as the macular pigment (MP)⁵. Both serum and ocular concentrations of lutein and zeaxanthin have been shown to increase following increased intake of foods rich in these carotenoids^{6,7} or ingestion of L/Z supplements⁸⁻¹⁰.

MPOD (macular pigment optical density) is a measurement of the attenuation of blue light by macular pigment and is linearly related to the amount (concentration × pathlength × area) of lutein and zeaxanthin in the macula⁴.

Dietary intakes of L/Z have been associated with MPOD levels. A review paper by Bernstein and colleagues in 2010 identified more than 24 studies which have demonstrated an increase in macular carotenoids following L/Z supplementation of 2–30 mg per day or a high carotenoid diet⁴.

Note: In order to address the research question which is the subject of this systematic review, the dietary intake of L/Z (and not simply measurements of MP or MPOD) is the 'property of the food' in the food-health relationship. Studies that only included a measure of MP and/or MPOD without quantification of L/Z were excluded. See more details provided in section 2.2.

Bioavailability of lutein and zeaxanthin from eggs

Evidence indicates the bioavailability of lutein and zeaxanthin from eggs is higher than from vegetable sources, most likely due to the fat content of eggs^{11,12}. Furthermore, it has been suggested that the complex cellular structure of plant sources of L/Z may impede the release of these carotenoids from the chloroplast^{13,14} although cooking may enhance bioavailability of carotenoids from plant sources¹⁵.

The consumption of 1 egg per day over 5 weeks has been shown to increase serum lutein levels by 26% and zeaxanthin levels by 38%¹⁶. A 12-week egg intervention, in which women consumed 6 eggs per week, demonstrated egg intake increased serum zeaxanthin levels as well as macular pigment optical density⁷. Another study found the consumption of 3 eggs per day for 12 weeks increased serum lutein and zeaxanthin by 21% and 48%, respectively¹⁷. Similar results were also found in a study of healthy young adults, 18-30yrs, whose serum lutein and zeaxanthin levels significantly increased by 20-31% (p<0.05) following the consumption of 2-3 eggs per day for 4 weeks¹⁸.

Further evidence of the increased bioavailability of lutein and zeaxanthin from eggs comes from studies assessing eggs enriched with higher amounts of L/Z than standard eggs. Kelly et al, 2014 showed the addition of 1 lutein-enriched egg per day (for 90 days) to the diet of 100 adults significantly increased lutein levels by 76% (p < 0.001). Furthermore, the consumption of 1 zeaxanthin-enriched egg per day (for 90 days) to the diet of 100 adults significantly increased zeaxanthin levels by 430% (p < 0.001). Researchers suggested the increases in serum L/Z in this trial are comparable with a daily use of 5 mg supplements¹⁹.

More recently, an 8-week intervention study (known as the Egg Xanthophyll Intervention clinical Trial(EXIT)) in adults, 18-65 years, showed serum carotenoid levels increased significantly over time in control (standard egg) and enriched egg groups, but to a significantly greater extent in the enriched egg group (P<0.001)²⁰.

Lutein bioavailability has also been compared between the consumption of 6mg of lutein from lutein-enriched eggs, lutein supplement or spinach in healthy men²¹. After 10 days, serum responses were significantly higher after egg consumption than after a lutein supplement or spinach intake²¹.

1.2 Description of the health effect

The health effect that is the subject of this review is *the maintenance of vision*. Vision (often referred to as 'visual function' or 'visual performance' in the literature) can be measured by using standard tests of visual acuity (VA) and contrast sensitivity (CS). No single test reflects all of the parameters of visual function but the most widely used means of testing vision is known as visual acuity, which measures spatial resolving power of the visual system at a 100%⁵.

Contrast sensitivity is a measure of the visual system's ability to distinguish objects of different luminance and is measured for different target sites. Contrast sensitivity is a more reflective measure of overall visual performance than visual acuity, in healthy and in diseased eyes⁵. It has been noted that contrast sensitivity is a more sensitive visual indicator compared to visual acuity and can provide additional information at the very beginning of visual dysfunction²².

How is visual acuity measured?

As part of visual performance examinations, optometrists can determine best corrected visual acuity (BCVA) with decimal charts in an examination room with standardised lighting conditions (^{23,24}).

How is contrast sensitivity measured?

Temporal contrast sensitivity can be assessed by the customised, LED-driven tabletop device described by Wooten et al 2010²⁵. Contrast sensitivity was measured using the contrast glare tester (CGT-1000; Takagi Seiko, Nagano, Japan). The CGT-1000 is able to determine accurately contrast sensitivity in a rapid and simple automated manner²⁴.

Furthermore, since the leading cause of blindness in Australians over 55 years of age is age-related macular degeneration (AMD), studies which consider the role of L/Z in preventing or minimising the progression of AMD are also included in this systematic review.

There are three stages of AMD defined in part by the size and number of drusen under the retina²⁶:

- **Early AMD.** Early AMD is diagnosed by the presence of medium-sized drusen, which are about the width of an average human hair. People with early AMD typically do not have vision loss.
- Intermediate AMD. People with intermediate AMD typically have large drusen, pigment changes in the retina, or both. Again, these changes can only be detected during an eye exam. Intermediate AMD may cause some vision loss, but most people will not experience any symptoms.
- Late AMD. In addition to drusen, people with late AMD have vision loss from damage to the macula. There are two types of late AMD:
 - In geographic atrophy (also called dry AMD), there is a gradual breakdown of the light-sensitive cells in the macula that convey visual information to the brain, and of the supporting tissue beneath the macula. These changes cause vision loss.
 - In neovascular AMD (also called wet AMD), abnormal blood vessels grow underneath the retina.
 ("Neovascular" literally means "new vessels.") These vessels can leak fluid and blood, which may lead to swelling and damage of the macula. The damage may be rapid and severe, unlike the more gradual course of geographic atrophy. It is possible to have both geographic atrophy and neovascular AMD in the same eye, and either condition can appear first.

In the literature, there are a number of definitions, scales and systems used to classify and grade AMD or ARM (agerelated maculopathy). These include The Wisconsin Age-Related Maculopathy Grading System²⁷, an International classification and grading system for age-related maculopathy described by Bird et al, 1995²⁸ and The Age-Related Eye Disease Study severity scale for age-related macular degeneration²⁹.

The Wisconsin Age-Related Maculopathy Grading System

Age-related macular degeneration is usually characterized by the presence of drusen and other abnormalities of the retinal pigment epithelium in the macular area. The Wisconsin system is derived from methods used to grade AMD and diabetic retinopathy in some clinical studies and trials. The system was developed for and used in two large population-based studies: the Beaver Dam Eye Study and the Framingham Eye Study²⁷.

Klein, 1991 details the grading of drusen and other aspects of ARMD including pigmentation and lesions²⁷.

International classification and grading system for age-related maculopathy

Here age-related maculopathy is defined as a disorder of the macular area of the retina, most often clinically apparent after 50 years of age, characterised by any of the following items, without indication that they are secondary to another disorder:

- Discrete, whitish-yellow spots identified as "drusen" which are external to the neuroretina.
- Areas of increased pigment or hyperpigmentation associated with drusen
- Areas of depigmentation or hypopigmentation of the retinal pigment epithelium most often more sharply demarcated than drusen, without any visibility of choroidal vessels associated with drusen.

Bird, 1995 details grading of drusen, pigmentation of the retina, geographic atrophy and neovascular AMD²⁸.

The Age-Related Eye Disease Study severity scale for age-related macular degeneration

An important goal of AREDS was the development of a severity scale for AMD, to provide baseline risk categories, to allow tracking of progression along the scale, and to define surrogate outcomes for progression to advanced AMD. This report describes the scale which uses neovascular AMD and geographic atrophy (GA) involving the center of the macula (CGA) as the principal outcome measures. Davis 2005 details grading of drusen, pigment, depigmentation, geographic atrophy and predominance of soft indistinct drusen²⁹.

Since vision loss is associated with intermediate and advanced AMD our conclusions regarding causal association will focus more heavily on these forms of AMD rather than early AMD, where vision loss is unlikely.

1.3 Description of the proposed food-health relationship

The proposed food-health relationship which is the subject of this review is that increasing dietary intake of lutein and zeaxanthin helps maintain vision in adults. Specifically,

Does eating higher amounts of lutein and zeaxanthin maintain vision in adults compared to eating lower amounts of lutein and zeaxanthin?

The target population is adults. AMD is the leading cause of blindness in Australians over 55 years of age. Since other research studies have investigated the effect of lutein and zeaxanthin intake on vision in adults under the age of 55 years old we did not restrict the population group to a specific age.

2. Retrieval of scientific evidence – systematic review based on the original literature only

S6-2 (b) A description of the search strategy used to capture the scientific evidence relevant to the proposed relationship between the food or property of food and the health effect, including the inclusion and exclusion criteria.

2.1 Search Strategy

Two databases, PubMed and CINAHL were searched in May 2018 for English language studies of dietary lutein and zeaxanthin from either foods, supplements or overall diet that reported on aspects of visual function including visual acuity, contrast sensitivity and/or the development or progression of age-related macular degeneration.

PICOS Statement

P (population): Adults

I or E (intervention or exposure): High dietary or supplemental lutein and/or zeaxanthin

C (comparison): No or low intake of lutein and/or zeaxanthin or placebo

O (outcome): Vision (as measured by visual acuity or contrast sensitivity) or incidence or progression of AMD S (study design): Cohort or randomised controlled trials

Research Question: Are adults who consume higher amounts of lutein and zeaxanthin, through food or supplements, more likely to maintain vision compared to adults who consume lower amounts of lutein and zeaxanthin?

Search terms included: lutein, zeaxanthin, xanthophyll/s, antioxidant/s or carotenoid/s in conjunction with the following: vision, visual performance, visual function, visual acuity, contrast sensitivity, age-related macular degeneration, age-related maculopathy. Keywords and MeSH term searches were conducted.

Articles were limited to human studies, English language and adults 19+ in PubMed and CINAHL searches.

Studies were limited to higher quality study designs including randomised controlled trials and cohort studies. Casecontrol and cross-sectional studies were not included in the systematic review.

2.2 Inclusion and Exclusion Criteria

The inclusion criteria were as follows:

- Human studies in adults
- Cohort or randomised controlled studies
- Follow up for at least 1 year or more in cohort studies
- Study outcomes include a measure of vision such as contrast sensitivity, visual acuity or AMD development or progression
- Dietary or supplemental intake of lutein and/or zeaxanthin was quantified
- Measure of effect reported (eg, mean difference or Relative Risks (RR) or Odds Ratio (OR) or Hazard Ratios (HRs) and their CIs were reported)

The exclusion criteria were as follows:

- Animal or in-vitro studies
- Human studies in children
- Non-English language studies
- Studies in which participants had pre-existing eye disease (other than AMD) including cataracts, retinitis pigmentosa and diabetic retinopathy
- If lutein and zeaxanthin were co-administered with omega-3 or other vitamins and minerals (RCTs).
- Outcome was only increase in macular pigment or macular pigment optical density (MPOD) with no other measure of vision reported

Figure 2: PRISMA Diagram showing the study review and selection process

Search records were reviewed, screened and selected for inclusion by BE and JK. Tabulation of study data was conducted by JK and quality assessment of the included studies was conducted by BE and JK. Any discrepancies in the review or selection of studies or in the quality assessment was discussed and rectified between the authors.

S6-2 (c) A final list of studies based on the inclusion and exclusion criteria. Studies in humans are essential. A relationship between a food or property of food and the health effect cannot be established from animal and *in vitro* studies alone.

2.3 Final list of included studies

Table 2: List of included randomised controlled trials based on the inclusion and exclusion criteria

Study Authors	Study Title	Abstract URL
Ma L, Lin XM, Zou ZY, Xu XR, Li Y, Xu R. 2009	A 12-week lutein supplementation improves visual function in Chinese people with long-term computer display light exposure.	https://www.ncbi.nlm.nih.gov/pubmed /19586568
Weigert G, Kaya S, Pemp B, Sacu S, Lasta M, Werkmeister RM, Dragostinoff N, Simader C, Garhöfer G, Schmidt- Erfurth U, Schmetterer L. 2011 ³⁰	Effects of lutein supplementation on macular pigment optical density and visual acuity in patients with age-related macular degeneration.	https://www.ncbi.nlm.nih.gov/pubmed /21873668
Richer SP, Stiles W, Graham-Hoffman K, Levin M, Ruskin D, Wrobel J, Park DW, Thomas C. 2011 ³¹	Randomized, double-blind, placebo-controlled study of zeaxanthin and visual function in patients with atrophic age- related macular degeneration: the Zeaxanthin and Visual Function Study (ZVF) FDA IND #78, 973.	https://www.ncbi.nlm.nih.gov/pubmed /22027699
Sabour-Pickett S, Beatty S, Connolly E, Loughman J, Stack J, Howard A, Klein R, Klein BE, Meuer SM, Myers CE, Akuffo KO, Nolan JM. 2014 ³²	Supplementation with three different macular carotenoid formulations in patients with early age-related macular degeneration.	https://www.ncbi.nlm.nih.gov/pubmed /24887490
Huang YM, Dou HL, Huang FF, Xu XR, Zou ZY, Lin XM. 2015 ²²	Effect of supplemental lutein and zeaxanthin on serum, macular pigmentation, and visual performance in patients with early age-related macular degeneration.	https://www.ncbi.nlm.nih.gov/pubmed /25815324
Yao Y, Qiu QH, Wu XW, Cai ZY, Xu S, Liang XQ. 2013	Lutein supplementation improves visual performance in Chinese drivers: 1-year randomized, double-blind, placebo-controlled study.	https://www.ncbi.nlm.nih.gov/pubmed /23360692

Age-Related Eye Disease Study 2 (AREDS2) Research Group, Chew EY, Clemons TE, Sangiovanni JP, Danis RP, Ferris FL, Elman MJ, Antoszyk AN, Ruby AJ, Orth D, Bressler SB, Fish GE, Hubbard GB, Klein ML, Chandra SR, Blodi BA, Domalpally A, Friberg T, Wong WT, Rosenfeld PJ, Agrón E, Toth CA, Bernstein	Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: AREDS2 report No. 3.	https://www.ncbi.nlm.nih.gov/pubmed /24310343
Age-Related Eye Disease Study 2 Research Group. Collaborators: Chew EY, Clemons TE, SanGiovanni JP, Danis R, Ferris FL, Elman M, Antoszyk A, Ruby A, Orth D, Bressler S, Fish G, Hubbard B, Klein M, Chandra S, Blodi B, Domalpally A, Friberg T, Wong W, Rosenfeld P, Agron E, Toth C, Bernstein P, Sperduto R. 2013 ³⁴	Lutein + zeaxanthin and omega- 3 fatty acids for age-related macular degeneration: the Age- Related Eye Disease Study 2 (AREDS2) randomized clinical trial.	https://www.ncbi.nlm.nih.gov/pubmed /23644932

Table 3: List of included cohort studies based on the inclusion and exclusion criteria

Study Authors	Study Title	Abstract URL
Flood V, Smith W, Wang JJ,	Dietary antioxidant intake and	https://www.ncbi.nlm.nih.gov/pubmed
Manzi F, Webb K, Mitchell	incidence of early age-related	<u>/12466170</u>
P. 2002	maculopathy: the Blue	
	Mountains Eye Study.	
van Leeuwen R, Boekhoorn	Dietary intake of antioxidants	https://www.ncbi.nlm.nih.gov/pubmed
S, Vingerling JR, Witteman	and risk of age-related macular	<u>/16380590</u>
JC, Klaver CC, Hofman A, de	degeneration.	
Jong PT. 2005		
Cho E, Hankinson SE,	Prospective study of	https://www.ncbi.nlm.nih.gov/pubmed
Rosner B, Willett WC,	lutein/zeaxanthin intake and	<u>/18541575</u>
Colditz GA. 2008	risk of age-related macular	
	degeneration.	
Tan JS, Wang JJ, Flood V,	Dietary antioxidants and the	https://www.ncbi.nlm.nih.gov/pubmed
Rochtchina E, Smith W,	long-term incidence of age-	<u>/17664009</u>
Mitchell P. 2008	related macular degeneration:	
	the Blue Mountains Eye Study.	

Ho L, van Leeuwen R, Witteman JC, van Duijn CM, Uitterlinden AG, Hofman A, de Jong PT, Vingerling JR, Klaver CC. 2011 ³⁵	Reducing the genetic risk of age-related macular degeneration with dietary antioxidants, zinc, and ω-3 fatty acids: the Rotterdam study.	https://www.ncbi.nlm.nih.gov/pubmed /21670343
Wang JJ, Buitendijk GH, Rochtchina E, Lee KE, Klein BE, van Duijn CM, Flood VM, Meuer SM, Attia J, Myers C, Holliday EG, Tan AG, Smith WT, Iyengar SK, de Jong PT, Hofman A, Vingerling JR, Mitchell P, Klein R, Klaver CC. 2014	Genetic susceptibility, dietary antioxidants, and long-term incidence of age-related macular degeneration in two populations.	https://www.ncbi.nlm.nih.gov/pubmed /24290803
Wu J, Cho E, Willett WC, Sastry SM, Schaumberg DA. 2015 ³⁶	Intakes of Lutein, Zeaxanthin, and Other Carotenoids and Age- Related Macular Degeneration During 2 Decades of Prospective Follow-up.	https://www.ncbi.nlm.nih.gov/pubmed /26447482
Lin H, Mares JA, LaMonte MJ, Brady WE, Sahli MW, Klein R, Klein BEK, Nie J, Millen AE. 2017 ³⁷	Association between Dietary Xanthophyll (Lutein and Zeaxanthin) Intake and Early Age-Related Macular Degeneration: The Atherosclerosis Risk in Communities Study.	https://www.ncbi.nlm.nih.gov/pubmed /28332910

3. Tabulation of data from the final list of included studies

S6-2 (d) A table with key information from each included study. (i) the study reference (ii) the study design (iii) the objectives (iv) the sample size in the study group and loss to follow-up or non-response (v) the participant characteristics (vi) the method used to measure the food or property of food including amount consumed (vii) confounders measured (viii) the method used to measure the health effect (ix) the study results, including effect size and statistical significance (x) any adverse effects

3.1 Summary of key information from included studies

Tables 4 and 5 below summarise the key information from the included studies.

Study Reference	Study Design	Study Objectives	Sample Size & loss to follow up	Characteristics of participants	Amount of food/property of food consumed	Method used to measure food/property of food	Confounders Measured	Method used to measure health effect	Study results (including effect size and statistical significance)	Adverse Effects
Visual Acuity	and/or Co	ntrast Sensitivity M	easures							
ruang YM et al 2015. Quality Rating: 14	Study duratio n 2 years	2-year effect of multiple doses of lutein/ zeaxanthin on serum, macular pigmentation, and visual performance on patients with early age- related macular degeneration (ADM).	(initial) Loss to follow up= 4 subjects Proporti on loss to follow up = 4%	over 50 years with clinical diagnosis of early AMD and clear ocular media. No other ocular disorders or unstable systemic or chronic illness. No antioxidant supplement use in previous 6 months. Placebo: Age 69.0±7.5; Male 39.3%; BMI 24.8±3.0kg/m ² 10mg lutein: Age 69.7±8.3; Male 34.6%; BMI 24.1±3.4kg/m ² 20mg Lutein: Age 69.3±6.9; Male 51.9%; BMI 25.1±3.3kg/m ² 10mg Lutein + 10mg Lutein +	An subjects were randomly assigned to take either 10mg lutein, 20mg lutein, lutein 10mg + zeaxanthin 10mg, or a placebo.	An supplements were pre-packed and ready to consume Diet stability was assessed using a validated 120-item FFQ conducted at baseline, 48 weeks, and 2 years.	 ninormation on characteristics and demographics including age, sex, education and BMI was collected using questionnaires and examinations. Serum total cholesterol (TC), triglyceride (TG), high density lipoprotein- cholesterol (HDL-C), low density lipoprotein- cholesterol (LDL-C), and glucose were measured. No difference in smoking status among groups. Dietary intakes of lutein, zeaxanthin, beta- carotene, and other antioxidants were not significantly different among the groups or during the intervention (for all, P > 0.05). 	corrected visual acuity (BCVA) was measured according to the Early Treatment Diabetic Retinopathy Study (ETDRS) protocol. Contrast Sensitivity (CS) was measured with CSV-1000 test system (Vectore- Vision, Dayton, OH) at 4 spatial frequencies (3,6,12 and 18 cycles/degree) with a grade scale from 1 (high contrast) to 8 (low contrast).	Supplementation with 20mg lutein increased MPOD by 34.6%, P< 0.01) and CS at 3 cycles/degree $(+1.47\pm0.39; P<0.01)$ and 6 cycles/degree $(1.62\pm0.36; P<0.001)$ for the first 48 weeks. By year 2, the 10mg lutein group reached the same MPOD level (0.442D.U.) as the 20mg lutein group (0.441D.U.). Repeated-measures analyses showed a significant time × treatment interaction of MPOD (P = 0.046). MPOD significantly increased during the supplementation (P < 0.001), whereas no statistical treatment effect was shown (P= 0.072). At 2 years, CS at 3cycles/degree in the 10mg lutein group significantly increased $(+1.47\pm0.34$ (increased by 16.1%), P < 0.05) to a similar peak value to the 20mg lutein group.	no adverse effects

									No statistical changes of BCVA were observed during the trial.	
Sabour- Pickett S et al 2014. Quality Rating: 9	RCT Study duratio n 12 month s	To investigate the impact of three different macular carotenoid formulations on macular pigment optical density and visual performance in subjects with early age- related macular degeneration.	n=67 (initial) Loss to follow up= 15 subjects Proporti on loss to follow up = 22%	Subjects with early AMD (the presence of drusen and pigmentary changes) in at least 1 eye; corrected distance visual acuity of ≥6/12 in the study eye. Age: 66±8 years BMI: 26.1±5.5 kg/m ² Gender: Male 35%	Subjects were allocated to one of the following groups: Intervention Group 1 (20 mg/day lutein and 2 mg/day zeaxanthin); Intervention Group 2 (10mg/day meso- zeaxanthin, 10mg/day lutein, and2mg/day zeaxanthin); and Group 3 (17 mg/day meso-zeaxanthin, 3 mg/day lutein, and 2 mg/day zeaxanthin). Baseline carotenoid- based diet score: Entire group= 18.7±11.2 Group 1= 17.3±10.9 Group 2= 21.9±12.7 Group 3= 16.0±8.4	All supplements were pre-packed and ready to consume A subject's weekly intake of carotenoid-rich foods was inputted into an L/Z screener to give a carotenoid- based diet score. Values are weighted for frequency of intake of the food and for bioavailability of L and Z within these foods (the range of scores on the L/Z screener is 0–75).	A demographic, medical, ophthalmic, and lifestyle case history was obtained for each subjects at baseline. There was no significant difference between the groups in any baseline data variable (including gender, BMI, diet score, laterality, smoking status, education, BMI, age and AMD severity).	Contrast sensitivity was assessed using the logMAR chart at 5 different spatial frequencies (1.2, 2.4, 6.0, 9.6, and 15.15 cycles per degree).	In group 1 (20mg/day L +2mg/Z) MPOD increased significantly from baseline to 12 months at 1.75 degree only (from 0.16±0.11 to 0.21±0.09; P= 0.018). Statistically significant improvements in letter contrast sensitivity were seen at low spatial frequencies at 1.2 and 2.4 cycles in Group 1 (from 73.0±49.1 to 91.8±48.5; P=0.021 and from 59.7±45.3 to 86.7±54.2; P=0.006, respectively). There was no statistically significant difference between treatment groups including group 1 in term of change in the AMD severity scale (P= 0.455, Pear- son chi-square test).	Not reported in the paper
et al 2011. Quality Rating: 15	Study Duratio	whether dietary supplementatio n with the	(initial: 57 men, 3	not have high-risk retinal characteristics for	randomly assigned to 1 of 3 groups: 1) 8mg zeaxanthin, 2)	were pre-packed and ready to consume	parameters including age, smoking in pack years, alcohol intake,	contrast Early Treatment of Diabetic	in equal MPOD variance and MPOD increasing in each of the 3 groups	no adverse effects
	n 1	carotenoid	women)	advanced AMD or	8mg zeaxanthin +	Diat was assassed	BMI, AMD duration	Retinopathy Study	from 0.33± 0.17 density	
	year	raises macula	follow	of I (or Z_{Y})	lutein (control	using the FFO for	measured and no		0 51+0 18du at 12month	
		pigment optical	up= 8	beyond the	group)	the presence of	significant differences	assessed to a	(P=0.03),but no	
		density (MPOD)	subjects	minimal 250 mg/d	8	AREDS and AREDS II	were found among	fractional line	between-group	
		and has unique	Proporti	commonly found		nutrients, dietary	the treatment groups.	(single letter),	differences (Analysis of	
		visual benefits	on loss	in pabulum-type		omega n3 fatty		displayed randomly	Variance; P=0.47).	
		for patients	to follow	daily		acids, and	The baseline vision	on a video		
		with early	up = 13%	multivitamins		carotenoids (lutein,	parameters were	projection system at	In the zeaxanthin group,	
		atrophic		within 6 months.		zeaxanthin, and	mostly matched	10 feet (M&S	high-contrast visual	
		macular				miscellaneous	among groups except	Technologies, Smart	acuity improved	
		degeneration		All subjects had		nutrients within the	that the Smith	Systems II, Park	significantly at 12 month	

		have to a start of		والمتحالية والمتحد والمتحد		مالخم مخالم د		Dialage Illia - 1-1		1
		symptoms but		age-related		beginning and and	Low Luminance low	Masurements	(T_1, S) (T_1, S) (T_2, S) (T_1, S) (T_1, S) (T_2, S) (T_1, S) (T_2, S) (T_1, S) (T_2, S) (T_1, S) (T_1, S) (T_2, S) (T_1, S) (T_2, S) (T_1, S) (T_2, S) (T_1, S)	
		lowor rick		macular		of the study	contrast near test was	were converted to	contract visual acuity	
		National		dogonoration		of the study.	cimilarly reduced at		$(\pm 4.2 \text{ lottors } P > 0.05)$	
		Institute of					57 7+ 17 for the right		(+4.3 letters, F > 0.03)	
		Hoalth/		(AND)			57.7 ± 17 for the right	acuity.	wore insignificantly	
		National Evo		Ago: 74 0+10			loft over with right	Low contrast near	improved	
		Instituto/Agod		Age. 74.9±10, Smoking: 0.2±0 E			over in the 7x plus l	visual acuity was	improved.	
		Related Evo		SHIUKING. U.Z±U.S			eyes III the 2x plus L	visual acuity, was	Lutain group showed	
		Disease Study		20 1+E: Diabotoc:			subgroup having	uith a 10% Wahar	significant increase in	
		characteristics		29.1 ± 5 , Diabeles.			function (1	fraction	high contract visual	
		characteristics.		0.2±0.4, AIVID				Colophrander Mixed	acuity (LE 6 lottors)	
				41 4+41months			wayANOVA, P<0.04)		P=0.05 low contrast	
				41.4 ± 4111011015 ,			greater retinenathy	Contrast Reduing	P=0.03), IOW-CONTRAST	
							greater retinopatily.	Caru (#4051,	Visual acuity (+7.2	
								Precision vision,	(1.48%, P=0.04) and CSF	
								Lasalle, IIIIIOIs) at	(+48%; P=0.05).	
								40 cm to a mactional	In lutain and zeawanthin	
								with a LogMAR	group, significant	
								with a Logivian	increase in high contract	
								conversion.	visual acuity (+6.0	
								Distance photonic	letters: P=0.05) and low-	
								contrast sensitivity	contrast visual acuity	
								function (CSE) at 5	(+8.8 letters P=0.02)	
								snatial frequencies	Insignificant	
								(1 5 3 6 12 and 20	improvement was	
								cycles per degree	observed on CSE (+20%	
								was determined	P>0.05)	
								with the Functional	170.001.	
								Vision Analyzer		
								(Stereo Ontical Co		
								Inc., Chicago,		
								Illinois).		
Ma L et al	RCT	To examine the	n=37	Subjects aged	Subjects were	All supplements	No significant baseline	Uncorrected visual	No statistical changes	Not
2009.		effect of	No	between 22 and	assigned to one of	were pre-packed	difference was found	acuity (UCVA) and	from baseline were	reported in
Quality	Study	different doses	attrition	30 years with	the below groups:	and ready to	among placebo and	best-spectacle	observed in uncorrected	the paper
Rating: 13	duratio	of lutein	Proporti	average daily	Placebo, Group L6	consume	two treatment groups.	corrected visual	visual acuity and best-	the paper
0.0.0	n 12	supplementatio	on loss	computer usage	(6mg lutein/d) and		including age. gender.	acuity (BSCVA) were	spectacle corrected	
	weeks	n on visual	to follow	time longer than	Group L12 (12mg	Dietary intake was	BMI, serum lutein	measured with	visual acuity. but there	
		function in	up = 0%	10 hr during the	lutein/d)	assessed using FFO	concentration and	decimal charts in an	were significant negative	
		subjects with		previous 2 years	, -,	and 3 day weighed	dietary lutein, retinol	examination room	correlations between	
		long-term		and without	Baseline measures	food record at	equivalents, vitamin C.	with standardized	baseline UCVA and	
		computer		clinical signs of	of dietary lutein:	baseline and final	vitamin E, zinc and	lighting conditions.	UCVA change from	
		display light		ocular disease or	Placebo:	study visit.	beta carotenoid.	Contrast sensitivity	baseline (r 0·724,	
		exposure.		other	2.2±2.2mg/d	,		was measured using	P=0.042) and between	
				abnormalities.	Group L6:		The three groups also	the contrast glare	baseline BSCVA and	
					2.8±2.2mg/d		did not differ in visual	tester (CGT-1000:	BSCVA change from	
				Placebo: Female	Group L12:		performance indices.	Takagi Seiko,	baseline (r 0.798,	
				50%; Age	2.3±1.8mg/d		except for higher	Nagano, Japan)	P=0.016) in Group L12	
				25.7±2.1 years;	5.		contrast sensitivity at		(12mg lutein/day). No	

	1			DNAL	Manageros of distant		4 08 in Crown Diacoba		cignificant correlations	1
				BIVII	ivieasures of dietary		4.08 In Group Placebo		significant correlations	
				20.7±2.2kg/m-	lutein at 12 weeks		(P=0·045).		were observed in Group	
					are not reported.				L6 and Group Placebo.	
				Group L6: Female			There was no		This suggested a trend	
				50%; Age			evidence of time-		toward increase in visual	
				24.2±1.6years;			dependent changes or		acuity in Group L12	
				BMI			intra-group		(12mg lutein/day).	
				19.6±2.4kg/m²			differences in dietary			
							consumption of the		Contrast sensitivity in	
				Group L12:			nutrients among		Groups L6 (6mg	
				Female: 53.8%;			groups during the		lutein/day) increased	
				Age			follow-up, except for		with supplementation at	
				24.2±1.2years;			dietary zinc in Group		visual angles of 6.3°	
				BMI			Placebo. decreasing		(from 1.82±0.16 to	
				20.4+1.9kg/m ²			from 10.5 to 8.7mg		1.89+0.14: P<0.05) and	
							over time ($P=0.041$).		2.5° (from 1.78+0.17 to	
									1.91+0.10 P < 0.01	
									1.5120.10,1 <0.01).	
									Contrast sensitivity in	
									Groups 112 significantly	
									increased with	
									supplementation at	
									most visual angles	
									including C^{2} (from	
									1.81 ± 0.15 to 1.91 ± 0.11 ;	
									P<0.01), 4.0 (from	
									1.81 ± 0.16 to 1.89 ± 0.13 ;	
									P<0.01), 2.5 (from	
									1.76±0.19 to 1.83±0.14;	
									P<0.05), 1.6~(from	
									1.62±0.19 to 1.70±0.17;	
									P<0.05)and 1.0 (from	
									1.33±0.16 to 1.43±0.23;	
									P<0.05).	
Weigert G	RCT	To investigate	n=126	Subjects aged	Subjects were	All supplements	Baseline MPOD,	Visual acuity (VA)	Lutein significantly	Not
et al 2011.		whether lutein	(initial)	between 50 and	allocated to either	were pre-packed	MDLT, VA, Blood	was assessed with	increased MPOD by	reported in
Quality	Study	supplementatio	Loss to	90 years, with	placebo or lutein	and ready to	pressure, pulse rate	ETDRS (Early	27.9%± 2.9% (P< 0.001	the paper
Rating: 11	Duratio	n	follow	AMD (stages 2,3	supplementation	consume	and intraocular	Treatment Diabetic	versus placebo). No	
Ū	n 6	improves visual	up= 16	and 4), and clear	(the dosage in		pressure were	Retinopathy Study)	significant effect of	
	month	acuity (VA) and	subjects	nonlenticular	months 1-3 was		neasured.	charts	lutein supplementation	
1	s	macular	Proporti	ocular media and	20mg once daily and				on VA was found.	
1	-	function (mean	on loss	a VA> 0.4	in months 4-6 was				although a tendency	
		differential light	to follow		10mg once daily)				toward an increase was	
		threshold	un = 13%	Δσρ 71 6+8 6	Tottig once duity)				seen (+2 1+0 Aletters: P	
		MDIT)	ob - 12/9	Sev. male 56 0%	All subjects were				-0.07 versus placebo)	
1				ARED Staging						
1				7-42%· 2-20%·	lutein and/or				A significant correlation	
1				2-+3/0, 3-20/0, 1-27%	zoovonthin				was found between the	
1				4-3770	administration				incrosso in MPOD offer	
					auninistration.				E monthe and the	
									6 months and the	
					Dietary intake of	1	1		increase in VA after	

					lutein was not assessed.				6months (r =0.27, P=0.013).	
Yao Y et al 2013. Quality Rating: 9	RCT Study duratio n 1 year	to examine the effect of lutein supplementatio n on visual function in healthy drivers with long-term light exposure.	n=120 Attrition is not reported	Average daily working time as a driver was longer than 10 hours during the previous 2 years. Subjects did not have clinically detectable signs of ocular disease or other abnormalities. Mean age: 36.7years Female: 17.5% BMI:23.65kg/m ²	Subjects were allocated to either placebo or intervention group with 20mg lutein daily. Dietary lutein at baseline: Placebo group: 1.96±0.85mg/d Intervention group: 1.66±0.95mg/d	All supplements were pre-packed and ready to consume At the onset and at the end of the intervention, dietary intakes of lutein were quantified using a self- administered, semi- quantitative FFQ.	The baseline characteristics between placebo and intervention groups did not significantly differ in age, gender, BMI, dietary lutein, serum lutein and MPOD.	Refractive error and best corrected visual acuity (BCVA) were determined by a precise spectacle refraction with decimal charts with standardized lighting conditions. BCVA was determined as the average of three measurements. Contrast sensitivity were measured using the contrast glare tester (CGT- 2000; Takagi Seiko, Nagano, Japan)	MPOD increased significantly in the intervention group at central measured eccentricities (ie. at 0.25°, 0.5° and 1.0°; P<0.001, P<0.001 and P<0.005, respectively) from 3 month visits and onward.(Percent changes were not provided) There was a trend in intervention group toward an increase in BCVA measured, but there were no significant differences between baseline and 1, 3, 6, and 12months (P=0.9046, P=0.6452, P=0.5589, and P=0.3356, respectively), also there were no significant differences in group Placebo. Significant increases in contrast sensitivity (CS) at most eccentricities at 1.6log, 2.5log, 4.0log and 6.0log for mesophic and 1.0log, 1.6log, 2.5log, 4.0log and 6.0log for photopic conditions at 12 month visit (P<0.05).	No significant side effects or changes in biochemica l or hematologi c profiles were observed.

Progression of	Progression of AMD to late AMD											
Age-	RCT	To examine the	n=4203	Subjects aged 50	In addition to taking	All supplements	Baseline	Development of	In exploratory analysis	Not		
Related Eye	(This	effect of lutein/	Loss to	to 85 with	the original or a	were pre-packed	characteristics of	advanced AMD was	of lutein/ zeaxanthin vs.	reported in		
Disease	article	zeaxanthin	follow	bilateral	variation of the	and ready to	subjects were	defined as atrophy	no lutein/ zeaxanthin,	the paper		
Study 2	is a	supplementatio	up=841	intermediate	AREDS supplement,	consume	measured. The	involving the centre	the adjusted Hazard			
(AREDS2)	second	n on	subjects	AMD or advanced	participants were		baseline serum levels	of the macula or	Ratio of the			
Research	ary	progression to	Proporti	AMD in one eye.	randomly assigned	Baseline dietary	and dietary intake of	neovascular	development of late			
Group et al	analysi	late AMD.	on loss		to the following four	intake of lutein and	the study nutrients,	changes of AMD	AMD was 0.90 (95% CI			
2014.	s of the		to follow	Race: White	groups: 1) placebo,	zeaxanthin was	including those in the	that were detected	0.82- 0.99; P=0.04.)			
Quality	below		up = 20%	96.6%; Black/	2) lutein/	measured based on	AREDS supplements,	on central grading				
Rating: 12	RCT		-	African American	zeaxanthin	the Harvard Semi-	was balanced across	of the stereoscopic	No significant changes in			
	study)			1.3%; Asian 0.8%;	(10mg/2mg), 3)	Quantitative	treatment groups.	fundus photographs	visual acuity loss when			
				American Indian	omega-3 long-chain	Assessment FFQ.		for 1) definite	comparing L/Z vs. no L/Z			
	Study			0.1%; Other	polyunsaturated		Loss to follow up	central geographic	for ≥10 letters (Adjusted			
	Duratio			(1.2%)	fatty 3 acids (1.0g)		distributions were	atrophy, 2) retinal	HR 1.01; 95% CI 0.93-			
	n 5				and 4) combination		similar across the 4	features of	1.09; P=0.81); ≥15			
	years			Age:	of group 2 and 3.		treatment groups.	choroidal	letters (Adjusted HR			
				<55yrs 2%;				neovascularisation,	0.97; 95% Cl 0.88-1.06;			
				≥55 and <65 yrs	Baseline Lutein +		No clinically or	or history of	P=0.47), ≥30 letters			
				14.3%;	zeaxanthin dietary		statistically significant	treatment for AMD.	(Adjusted HR 0.94;			
				≥65 and <75yrs	intake (ug/d):		differences in		95%CI 0.84-1.05;			
				36.7%;	Placebo: Q1=121-		reported serious		P=0.29) and the			
				≥75 and <80yrs	1403; Q5= 4608-		adverse events,		development of visual			
				26.5%;	38110		including rates of		acuity worse than			
				≥80yrs 20.6%	L +Z: Q1=109- 1388;		development of		20/100 (Adjusted HR			
					Q5= 4740- 34398		neoplasms were		0.93; 95% CI 0.84-1.04;			
				Female 56.7%	DHA+EPA: Q1=154-		noted across the		P=0.20).			
					1428; Q5= 4554-		treatment groups.					
				Absence of other	21513							
				ocular diseases	L+Z+DHA+EPA:							
				such as high	Q1=43-1419; Q5=							
				myopia,	4492-39790							
				glaucoma,								
				clinically								
				significant								
				diabetic								
				retinopathy and								
				other diseases								
				that might								
				confound the								
				assessment of the								
				ocular outcome								
				measurements.								

Age-	RCT	To determine	n=4203	Subjects aged 50	In addition to taking	All supplements	Baseline	Development of	Kaplan-Meier	Not
Related Eve		whether adding	Loss to	to 85 with	the original or a	were pre-packed	characteristics of	advanced AMD was	probabilities of	reported in
Disease	Study	lutein +	follow	bilateral	variation of the	and ready to	subjects were	defined as atrophy	progression to advanced	the paper
Study 2	duratio	zeaxanthin.	up=841	intermediate	AREDS supplement.	consume	measured. The	involving the centre	AMD by 5 years was 29%	
(AREDS2)	n 5	DHA + EPA or	subjects	AMD or advanced	participants were		baseline serum levels	of the macula or	for lutein + zeaxanthin.	
Research	vears	both to the	Proporti	AMD in one eve.	randomly assigned	Baseline dietary	and dietary intake of	neovascular		
Group et al	1	AREDS	on loss	/ -	to the following four	intake of Lutein and	the study nutrients,	changes of AMD	Comparison of L+Z with	
2013.		formulation	to follow	Race: White	groups: 1) placebo,	zeaxanthin was	including those in the	that were detected	placebo demonstrated	
Quality		decreases the	up = 20%	96.6%; Black/	2) lutein/	measured based on	AREDS supplements,	on central grading	no statistically	
Rating: 12		risk of	•	African American	zeaxanthin	the Harvard Semi-	was balanced across	of the stereoscopic	significant reduction in	
U		developing		1.3%; Asian 0.8%;	(10mg/2mg), 3)	Quantitative	treatment groups.	fundus photographs	progression to advanced	
		advanced AMD.		American Indian	omega-3 long-chain	Assessment FFQ.	· · ·	for 1) definite	AMD (adjusted hazard	
				0.1%; Other	polyunsaturated		Loss to follow up	central geographic	ratio, 0.90; 98.7% Cl,	
				(1.2%)	fatty 3 acids (1.0g)		distributions were	atrophy, 2) retinal	0.76-1.07; P=0.12). The	
				. ,	and 4) combination		similar across the 4	features of	adjusted HR for L+Z VS	
				Age:	of group 2 and 3.		treatment groups.	choroidal	no L+Z was 0.91 (95%Cl,	
				<55yrs 2%;	U .		· · ·	neovascularisation,	0.82-1.00; p=0.05) for	
				≥55 and <65 yrs	All subjects agreed		Participants with ≥ 1	or history of	progression to advanced	
				14.3%;	to stop current use		serious adverse	treatment for AMD.	AMD.	
				≥65 and <75yrs	of supplements		events:			
				36.7%;	containing lutein,		Placebo (47.3%); L+Z		A further exploratory	
				≥75 and <80yrs	zeaxanthin, omega-		group (46.4%);		analyses stratifying by	
				26.5%;	3, vitamin C, vitamin		DHA+EPA (47.3%);		dietary intake:	
				≥80yrs 20.6%	E, beta-carotene,		L+Z+DHA+EPA (48.1%)		Participants in lowest	
					zinc or copper,				quintile, comparison of	
				Female 56.7%	other than those		No clinically or		L+Z vs no L+Z resulted in	
					supplied by AREDS2		statistically significant		an adjusted HR of	
				Absence of other			differences in		0.74(95%Cl, 0.59-0.94;	
				ocular diseases	Baseline Lutein +		reported serious		P=0.01) for progression	
				such as high	zeaxanthin dietary		adverse events,		to advanced AMD. For	
				myopia,	intake (ug/d):		including rates of		participants in the	
				glaucoma,	Placebo: Q1=121-		development of		highest quintile of L+Z	
				clinically	1403; Q5= 4608-		neoplasms, were		intake the	
				significant	38110		noted across the		corresponding adjusted	
				diabetic	L +Z: Q1=109- 1388;		treatment groups.		HR was 0.90 (95%Cl,	
				retinopathy and	Q5= 4740- 34398				0.7115; P=0.41), with	
				other diseases	DHA+EPA: Q1=154-				the results for remaining	
				that might	1428; Q5= 4554-				quintiles similar to that	
				confound the	21513				of the highest quintile:	
				assessment of the	L+Z+DHA+EPA:					
				ocular outcome	Q1=43-1419; Q5=				Q1: median 696ug/d	
				measurements.	4492-39790				(Range 552-823); HR	
									0.74; 95%Cl 0.59-0.94; =	
									0.01	
									Q2: median 1134ug/d	
									(Range 1030-1244); HR	
									0.94; 95%Cl 0.74-1.21; =	
									0.65	
									Q3: median 1585ug/d	
									(Range 1465-1719); HR	
									0.92; 95%Cl 0.72-1.17; =	

Table 5: Summary of key information from included observationa	al (cohort) studies reporting the effect of L/Z on early and late AMD.
--	--

Study Reference (Author, Year) Quality Rating	Study Design	Study Aims	Sample Characteristics • Country • Health status • Setting (free-living subjects) • Age range • Gender (M, F) • No. in final sample	Exposure and Duration • Food exposure • Duration of follow- up (for measurement of health effects)	Diet Assessment Tool	Results and Statistics Changes in Health Effect	Relevant Author's Conclusions
Flood V et al 2002. Quality Rating: 9	Cohort (BMES) 5 year follow up	To investigate associations between dietary intake, including modest supplement intake, of antioxidant vitamins and zinc at baseline and the 5-year incidence of early age-related maculopathy (ARM).	Mean age: 65.4years Female 59.2% Family history of macular degeneration: 2.55% All Subjects lived in two postcode areas west of Sydney Australia. No. in final sample = 2335 Proportion loss to follow up = 25%	Crude median lutein and zeaxanthin intake: Q1: 288ug (151/1000kcal) Q2: 510ug (259/1000kcal) Q3: 733ug (351/1000kcal) Q4: 967ug (478/1000kcal) Q5: 1466ug (719/1000kcal)	Only baseline dietary intake was measured using a 145-item FFQ that was modified for Australian diet. The FFQ included portion size estimates as well as frequency, strength, brand, and type of supplements	Q1: 288ug (151/1000kcal) Adjusted OR= referent Q2: 510ug (259/1000kcal) Adjusted OR=0.9; 95% CI 0.5-1.5 Q3: 733ug (351/1000kcal) Adjusted OR=0.8; 95% CI 0.5-1.4 Q4: 967ug (478/1000kcal) Adjusted OR=0.7; 95% CI 0.4-1.3 Q5: 1466ug (719/1000kcal) Adjusted OR=1.0; 95% CI 0.5- 1.5.6-1.6 P=0.93	After adjusting for age, gender, family history of ARM, and smoking status at baseline, no associations, or any trends suggesting possible association, were found between baseline intake of lutein and zeaxanthin and the 5 year incidence of early AMD
Tan JS et al 2008. Quality Rating: 9	Cohort (BMES) 10 year follow up	To assess the relationship between baseline dietary and supplement intakes of antioxidants and the long-term risk of incident age-related macular degeneration (AMD).	Mean age : 65years Female: 59.4% History of diabetes: 6.8% History of cardiovascular disease: 17.55% No. in final sample = 2454 Proportion loss to follow up (5 year) = 36% Proportion loss to follow up (10 year) = 16%	Energy-adjusted lutein and zeaxanthin intake: Top tertile: ≥ 942ug/day Median: 743ug/day Missing data for bottom tertile Total follow up 10 years	Only baseline dietary intake was measured by a modified 145-item semiquantitative FFQ. The included questions on dietary supplements including strength and frequency of supplement uses.	Top Tertile (≥ 942ug/day) vs rest of population and neovascular AMD: RR, 0.35; 95% Cl,0.13–0.92; P=0.033 Above median (743ug) L/Z and early AMD: RR, 0.66; 95%Cl, 0.48–0.92; P=0.013 The associations between late AMD and L/Z: Adjusted RR for late AMD (neovascular and geographic atrophy): T1: adjusted RR= referent T2: adjusted RR=1.11; 95%Cl	For dietary lutein and zeaxanthin intake, those in the top tertile had a reduced risk of incident neovascular AMD, and those with above-median intakes had a reduced risk of incident soft or reticular drusen (early AMD). Authors concluded that higher dietary lutein and zeaxanthin intake reduced the risk of long-term incident AMD. These results suggest a possible threshold protective effect of dietary

van	Cohort	To investigate	Subjects aged 55	Dietary lutein/	Dietary intake was	0.58-2.13 T3: adjusted RR=0.72; 95%Cl 0.34-1.50 P=0.36 Adjusted RR for neovascular AMD only: T1: adjusted RR= referent T2: adjusted RR=1.12; 95%Cl 0.52-2.41 T3: adjusted RR=0.37; 95%Cl 0.13-1.05 P=0.061 The association between	L/Z intake on the risk of incident neovascular AMD or indistinct soft drusen. Results driven mostly by
Leeuwen R et al 2005. Quality Rating: 11	(Rotterdam)	whether regular dietary intake of antioxidants is associated with a lower risk of incident AMD.	years or older in a middle-class suburb of Rotterdam, the Netherlands, without AMD in either eye (ie. With no drusen or pigment irregularities, hard drusen only, or soft drusen without pigment irregularities. No. in final sample = 4170 Proportion loss to follow up = 10%	zeaxanthin (mean): Q1: 1.4±0.3mg/d (range≤1.8) Q2: 2.0±0.1mg/d (range>1.8-≤2.2) Q3: 2.5±0.2mg/d (range>2.2-≤2.8) Q4: 3.6±1.3mg/d (range>2.8) Range follow up: 0.3 years to 13.9 years Mean follow up: 8 .0years Median follow up: 10.6 years	measure at baseline by a 170- item semi- quantitative FFQ during interview. The FFQ was validated by comparing the dietary checklist that subjects filled in prior to interview.	dietary lutein/ zeaxanthin (mean intake 2.37±1.08mg/d) and incident AMD was statistically insignificant (Adjusted HR 1.01; 95% CI 0.93- 1.09). The HR for incident AMD by Quartile of Energy adjusted dietary intake of L/Z was insignificant (P=0.65). Q1: 1.4±0.3mg/d (range≤1.8) Q2: 2.0±0.1mg/d (range>1.8- ≤2.2) Q3: 2.5±0.2mg/d (range>2.2- ≤2.8) Q4: 3.6±1.3mg/d (range>2.8)	early AMD cases. There was only 42 persons (7.5% of incident AMD) with incident late AMD. "Exclusion of the 42 persons with incident late AMD did not change the results".

Cho E et al	Cohort (NHS &	To evaluate the	Women from the	Energy adjusted	NHS: Diet was	Quintiles of median L/Z intake:	Lutein/zeaxanthin intake
2008.	HPFS)	association between	Nurses' Health Study	lutein/ zeaxanthin	assessed with a	Q1: 1349ug/d for women;	was not associated with the
Quality		lutein/zeaxanthin	(NHS):	intake in 1990:	validated semi-	1431ug/d for men	risk of self-reported early
Rating: 11		intake and AMD risk	Mean age: 59years;		quantitative 60-	Q2: 2052ug/d for women;	AMD. This association did
		by smoking status,	BMI ≥25kg/m²	Women:	item FFQ with	2236ug/d for men	not vary by smoking status,
		intake of antioxidant	(48.3%)	Q1: 1097±279 μg/d	approximately in	Q3: 2653ug/d for women;	intakes of vitamins C and E,
		vitamins, and body	Men from the Health	Q3: 2512±195 μg /d	1980 An expanded	2953ug/d for men	or body mass index.
		fatness	Professional Follow-	Q5: 5852±2797 μg /d	130-item FFQ was	Q4: 3389ug/d for women;	
			up Study (HPFS):	Men:	administered to	3835ug/d for men	There was a statistically
			Mean age: 62years;	Q1: 1209±317 μg /d	women in 1984,	Q5: 4930ug/d for women;	non-significant and
			BMI ≥25kg/m² (55%)	Q3: 2865±234 µg /d	1986 and every 4	5712ug/d for men	nonlinear inverse
			No diagnosis of AMD	Q5: 6879±315 μg /d	years thereafter.		association between L/Z
			or cancer at baseline			NHS: The adjusted multivariate	intake and neovascular AMD
			No. in final sample	Follow up 18 years	HPFS: The	RRs for increasing quintiles of	risk.
			=71494 women and		expanded 130-	median L/Z intake to early AMD	
			41564 men		item FFQ was	were:	For neovascular AMD, a
			Proportion loss to		administered to	Q1: RR=referent	nonlinear inverse
			follow up = 17%		men in 1986 and	Q2: RR= 0.84; 95%Cl 0.62-1.12	association was found
					every 4 years	Q3: RR= 0.93; 95%Cl 0.69-1.23	among never smokers.
					thereafter.	Q4: RR= 0.87; 95%Cl 0.65-1.17	
						Q5: RR= 0.89; 95%Cl 0.66-1.20	There was no statistically
						P for trend = 0.62	significant difference in the
							effect of L/Z on the different
						NHS: The adjusted multivariate	types of AMD.
						RRs for increasing quintiles of	
						median L/Z intake to	
						neovascular AMD were:	
						Q1: RR=referent	
						Q2: RR= 0.89; 95%CI 0.62-1.29	
						Q3: RR= 0.85; 95%CI 0.58-1.24	
						Q4: RR= 1.05; 95%Cl 0.73-1.52	
						Q5: RR= 0.79; 95%CI 0.53-1.17	
						P for trend = 0.42	
						HPFS: The adjusted multivariate	
						RRs for increasing quintiles of	
						median L/Z intake to early AMD	
						were:	
						Q1: RR=referent	
						Q2: RR= 1.64; 95%CI 1.04-2.57	
						Q3: RR= 1.38; 95%CI 0.86-2.20	
						Q4: RR= 0.97; 95%CI 0.58-1.61	
						Q5: RR= 1.66; 95%CI 1.04-2.64	
						P for trend = 0.26	
1	1	1		1		1	

			HPFS: The adjusted multivariate	
			RRs for increasing quintiles of	
			median L/Z intake to	
			neovascular AMD were:	
			Q1: RR=referent	
			Q2: RR= 0.67; 95%CI 0.41-1.09	
			Q3: RR= 0.83; 95%CI 0.51-1.32	
			Q4: RR= 0.85; 95%Cl 0.53-1.36	
			Q5: RR= 0.62; 95%CI 0.37-1.05	
			P for trend = 0.19	
			The pooled adjusted	
			multivariate RRs for increasing	
			quintiles of median L/Z intake	
			to early AMD were:	
			Q1: RR=referent	
			Q2: RR= 1.14; 95%Cl 0.59-2.21	
			Q3: RR= 1.08; 95%Cl 0.74-1.57	
			Q4: RR= 0.90; 95%CI 0.69-1.15	
			Q5: RR= 1.18; 95%CI 0.64-2.17	
			P for trend = 0.74	
			The pooled adjusted	
			multivariate RRs for increasing	
			quintiles of median L/Z intake	
			to neovascular AMD were:	
			Q1: RR=referent	
			Q2: RR= 0.80; 95%CI 0.60-1.08	
			Q3: RR= 0.84; 95%Cl 0.62-1.13	
			Q4: RR= 0.97; 95%Cl 0.73-1.30	
			Q5: RR= 0.72; 95%Cl 0.53-0.99	
			P for trend = 0.14	

WuJetal	Cohort (NHS &	To investigate the	Nurses' Health study	Mean daily intake of	The dietary 17 was	NHS COHORT:	Calculated intakes of L7 (P
2015.	NPHS)	associations	(NHS):	lutein and	assessed by	Adjusted relative risks of AMD	for trend = 0.003) was
Quality		between intakes of	Mean age: 62.2	zeaxanthin:	repeated FFO at	to calculated median intakes:	inversely related to
Rating: 11		carotenoids and	Mean BMI:	Nurses' Health study	baseline and	Advanced AMD:	advanced AMD in the NHS.
		AMD.	26.8kg/m^2	(NHS):	follow-up every 4	O1: 1408ug/d: Reference	whereas the association was
			White: 98%	Quintile 1: 1657ug/d	vears. The FFOs	Q2: 2098ug/d: RR 0.84: 95% CI	insignificant for
			Current Smoker:	Quintile 2: 2259ug/d	contained at least	0.67-1.04	intermediate AMD.
			11.4%	Quintile 3: 2732ug/d	15 questions for	O3: 2680ug/d: RR 0.78: 95% Cl	
				Quintile 4: 3338ug/d	fruit and juice	0.63-0.98	
			Health Professionals	Quintile 5: 4779ug/d	intake and 30	Q4: 3389ug/d: RR 0.72: 95% Cl	The associations between
			Follow-up study		auestions for	0.57-0.91	calculated LZ intake and
			(HPFS):	Health Professionals	vegetable intake	Q5: 4834ug/d: RR 0.68: 95% CI	advanced/intermediate
			Mean age: 63.2	Follow-up study	with common	0.54-0.87	AMD were insignificant in
			Mean BMI: 26kg/m ²	(HPFS):	used units or	P for trend= 0.003	HPFS
			White: 95.8%	Quintile 1: 1848ug/d	portion sizes were		
			Current Smoker: 5%	Quintile 2: 2563ug/d	specified for each	Intermediate AMD:	
				Quintile 3: 3091ug/d	item.	Q1: 1408ug/d: Reference	
			All subjects did not	Quintile 4: 3832ug/d		Q2: 2098ug/d: RR 0.82; 95% CI	
			have prevalent AMD,	Quintile 5: 5468ug/d		0.67-1.00	
			cancer (except non-	_		Q3: 2680ug/d: RR 0.91; 95% Cl	
			melanoma skin	Follow up 26 years		0.74-1.11	
			cancer), diabetes	for NHS and 24 years		Q4: 3389ug/d: RR 0.93; 95% Cl	
			mellitus, or	for HPFS		0.76-1.14	
			cardiovascular			Q5: 4834ug/d: RR 0.90; 95% CI	
			disease at baseline.			0.72-1.11	
						P for trend= 0.73	
			No. in final sample				
			=63443 females from			HPFS COHORT:	
			the nurses' health			Adjusted relative risks of AMD	
			study and n=38603			to calculated median intakes:	
			males from the			Advanced AMD:	
			health professionals			Q1: 1511ug/d: Reference	
			follow-up study.			Q2: 2313ug/d: RR 1.05; 95% CI	
			Loss to follow up is			0.75-1.47	
			not reported			Q3: 3012ug/d: RR 1.06; 95% CI	
						0.75-1.49	
						Q4: 3864ug/d: RR 1.06; 95% Cl	
						0.75-1.50	
						Q5: 5629ug/d: KR 1.08; 95% Cl	
						0.75-1.55	
						P for trend= 0.71	
						Intermediate AMD:	
						01: 1511ug/d: Reference	
						Q2: 2313ug/d: RR 1.27; 95% Cl	

			0.92-1.76	
			O3: 3012ug/d: RR 1.13: 95% Cl	
			0 81-1 58	
			OA: 3864ug/d: BB 1 06: 95% Cl	
			0 75-1 50	
			05: 5620ug/d: PP 1 20: 05% Cl	
			Q3. 30290g/0. KK 1.20, 35% Cl	
			0.84-1.70	
			P for trend= 0.65	
			Declard adjusted valative visits of	
			Pooled adjusted relative risks of	
			advanced AIVID to calculated	
			intakes in NHS and HPFS:	
			Q1: Reference	
			Q2: RR 0.90; 95% CI 0.75-1.08	
			Q3: RR 0.86; 95% Cl 0.71-1.03	
			Q4: RR 0.80; 95% CI 0.67-0.99	
			Q5: RR 0.79; 95% CI 0.64-0.97	
			P for trend= 0.04	
			P for heterogeneity=0.04	
			Pooled adjusted relative risks of	
			intermediate AMD to calculated	
			intakes in NHS and HPFS:	
			Q1: Reference	
			Q2: RR 0.92; 95% CI 0.78-1.10	
			Q3: RR 0.96; 95% CI 0.81-1.14	
			Q4: RR 0.96; 95% CI 0.80-1.14	
			Q5: RR 0.97; 95% CI 0.81-1.16	
			P for trend= 0.99	
			P for heterogeneity=0.17	
			* The quantity of LZ intake	
			cannot be found for the pooled	
			analysis	

Lin H et al	Cohort (ARIC)	To examine the	Age: 53.9+0.1	Overall intake of	17 intake was	01: 251-456ug/1000kcal:	1/7 intake was not
2017.		association between	Sex: Men (45%):	energy adjusted daily	assessed by the	Reference	associated with early AMD
Ouality		lutein and	Women(55%)	LZ:	66-item FFO at	O2: 660-867ug/1000kcal:	in both the unadjusted and
Rating: 11		zeaxanthin (17)	Race: African-	01: 251-	visit 1 and 6 years	Unadjusted OR 1.08: 95% CI	adjusted results.
		intake and prevalent	American (20%):	456ug/1000kcal	prior to fundus	0.82-1.43	
		early age-related	Caucasian (80%)	O2: 660-	photography at	Adjusted OR 1.07: 95% CI 0.81-	
		macular	Region: Forsyth	867ug/1000kcal	visit 3.	1.42	
		degeneration (AMD)	County NC (27%):	Q3: 1082-		Q3: 1082-1305ug/1000kcal	
		using data from the	Jackson MS (17%):	1305ug/1000kcal		Unadjusted OR 1.07: 95% CI	
		Atherosclerosis Risk	Minneapolis MN	Q4: 1592-		0.81-1.42	
		in Communities	, (29%); Washington	2027ug/1000kcal		Adjusted OR 1.07; 95% CI 0.80-	
		Study	County MD (27%)	Q5: 2910-4936 µg		1.42	
		,	BMI: <25kg/m ²	/1000kcal		Q4: 1592-2027ug/1000kcal	
			(34%); ≥25 and			Unadjusted OR 1.07; 95% CI	
			<30kg/m² (40%);	Follow up 6 years		0.81-1.42	
			≥30kg/m² (26%); 6			Adjusted OR 1.09; 95% CI 0.81-	
			Missing data			1.46	
						Q5: 2910-4936 ug/1000kcal	
			All subjects did not			Unadjusted OR 1.03; 95% CI	
			have advanced AMD			0.78-1.36	
			at baseline			Adjusted OR 1.02; 95% CI 0.76-	
						1.38	
			No. in final sample =			P=0.97 (unadjusted) P=0.91	
			10295			(adjusted)	
			Proportion loss to				
			follow up = 14%			Higher LZ intake was associated	
						with decreased odds of AMD	
						among participants with lower	
						HDL (OR=0.79, 95%CI 0.57-1.09)	
						but not higher HDL (P for	
						interaction= 0.048)	

Association by	genetic risk						
Ho L et al	Cohort	To investigate	mean age: 67	Mean intake of	Dietary intake was	CFH Y402H noncarrier:	For L/Z intake, the risk
2011.	(Rotterdam)	whether dietary	Gender: female	lutein/ zeaxanthin	measure at	T1: Reference; T2: HR 1.30 (95%	reduction of early AMD was
Quality		nutrients can reduce	56.6%	was 2.37±1.08 mg/d	baseline by a 170-	CI 0.89-1.88); T3: HR 1.39 (95%	from 2.63 (lowest tertile) to
Rating: 9		the genetic risk of	BMI: 23.35kg/m ²	_	item semi-	CI 0.96-2.03); P=0.13	1.72 (highest tertile) on
-		early age-related	No. in final sample =	Mean intake for 1st	quantitative FFQ	CFH Y402H heterozygous:	Homozygous CFH Y402H
		macular	2167	Tertile	during interview.	T1: HR 1.54 (95% CI 1.07-2.21):	(P=0.05). Heterozygotes and
		degeneration (AMD)	No attrition	CFHY402H noncarrier:	The FFO was	T2: HR 1.63 (95% CI 1.13-2.34):	noncarriers showed
		conferred by the	Proportion loss to	1.47±0.32 mg/d	validated by	T3: HR 1.33 (95% CI 0.92-1.93):	insignificant trends with
		genetic variants	follow up = 0%	CFHY402H	comparing the	P=0.37	higher intake
		CFHY402H and		heterozygous:	dietary checklist	CFH Y402H homozygous	
		100387715 4695		1.46+0.34 mg/d	that subjects filled	T1. HR 2 63 (95% CI 1 60-4 32)	Significant synergy index
		20030771371033.			in prior to	T2. HR 2 15 $(95\% \text{ Cl} 1.38 + 32)$	supported the possibility of
				homozygous:	interview	T2: HR 1 72/05% CI 0.07_{-3} (2):	hiological interaction
				1 50+0 25 mg/d	interview.	P=0.05	between L/7 intake and
				1.0C297715A60S		-0.05	
				LOC307713A093			cignificant cunorgy index
				ma/d			significant synergy index
				10C29771EA606			intake and LOC28771EA60S
				LUC307713A093			IIItake allu LOCS87715A095.
				Carrier: 1.45±0.34			The study showed that
				mg/u			high on distance intake of 1/7
				Maan intoka fan 2nd			nigher dietary intake of L/2
				Transile			can attenuate the incidence
				Tertile			of early AIVID in those
				CFHY402H noncarrier:			carrying important genetic
				3.38±1.17 mg/d			risk variants.
				СЕНУ402Н			
				heterozygous:			
				3.30±0.6 mg/d			
				CFHY402H			
				homozygous:			
				3.23±0.46 mg/d			
				LOC387715A69S			
				noncarrier: 3.29±0.71			
				mg/d			
				LOC387715A69S			
				Carrier: 3.39±1.19			
				mg/d			
				Median follow up 8.6			
				years			

Wang JJ et al	Cohort (BMES	To examine effect	BMES: Mean age	Baseline Dietary LZ	In BMES, Dietary	The adjusted ORs for the	Significant interaction
2014.	& Rotterdam)	modification	65.7years; Male	intake:	lutein/zeaxanthin	highest vs other 2 (middle and	between AMD genetic risk
Quality		between genetic	38.6%	BMES:	(LZ) was estimated	lowest) tertiles for LZ intake	status and LZ intake with
Rating: 10		susceptibility to age-	RS: Mean age	Population Mean:	using 145-item	are:	respect to risk of early or
C		related macular	66.6years; Male	912±490ug/d	FFQ. In RS,		any AMD was observed in
		degeneration (AMD)	40.6%	T1: mean 442ug/d	baseline dietary	Pooled:	RS but not the BMES.
		and dietary		(range 0-642)	information was	Genetic Risk Group = 0 risk	
		antioxidant or fish	No in final sample	T2: mean 810µg/d	collected using a	alleles from CEH or ARMS2	In pooled data analyses of
		consumption on	=1833 in BMES and	(range 642-1005)	checklist at home	Early AMD: adjusted OR 1 47	two study populations a
		AMD risk	n=3550 in RS	T3: mean 1425ug/d	following by a	95% CI 1 09-1 97	significant interaction was
		AND HSK	Proportion loss to	(range 1005-/1870)	face-to-face	Late AMD: adjusted OB 0.65	found between AMD
			follow up BMES –	(1011gc 1003 4070)	interview using a	95% CI 0 17-2 43	genetic risk status and 17
			25%	DC.	170 itom comi	Apy AMD: adjusted OP: 1.40	intake with respect to risk of
			2370 Droportion loss to	NJ. Dopulation Moan:	auantitativo EEO		(P=0.002) and any
			fallow we Dettendere		quantitative FFQ.	95% CI 1.05-1.87	
			follow up Rotterdam	2365±1070ug/0		Constis Disk Coster 1 visk	AIVID (P=0.0009). Among
			= 0.8%	11: mean 14/8ug/d		Genetic Risk Group= 1 risk	participants with high
				(range 101-1918)		alleles from CFH or ARIVIS2:	genetic risk status, the
				12: mean 2252ug/d		early AMD: adjusted OR 0.91;	highest intake of LZ was
				(range 1919-2610)		95% CI 0.73-1.13	associated with a >20%
				T3: mean 3362ug/d		late AMD: adjusted OR 1.06;	reduced risk of early AMD.
				(range 2610-32645)		95% CI 0.63-1.79	
						any AMD: adjusted OR 0.92;	By using data from 2
				Follow up 15 years		95% CI 0.75-1.13	population-based cohorts,
							we showed consistent
						Genetic Risk Group= 2 risk	evidence that participants
						alleles from CFH or ARMS2:	with 2 risk alleles of either
						early AMD: adjusted OR 0.78;	or both the CFH-rs1061170
						95% CI 0.62-0.99	or ARMS2-rs10490924 had a
						late AMD: adjusted OR 0.64;	significantly reduced risk of
						95% CI 0.40-1.03	early or any AMD if they
						any AMD: adjusted OR 0.75;	frequently consumed food
						95% CI 0.60-0.93	items rich in LZ.
							The effect modification of LZ
							on participants with high
						RS:	AMD genetic risk suggests
						Genetic Risk Group= 0 risk	the possibility that
						alleles from CFH or ARMS2	susceptibility to activation
						early AMD: adjusted OR 1 74	and amplification of the
						95% CI 1 21-2 50	complement nathways can
						late AMD: adjusted OR 1 18:	be compensated for by
						95% CL0 20-6 82	these antioxidants
						any AMD adjusted OP 1.60 \cdot	
							In conclusion, we showed
						5570 CI 1.10-2.41	that dietary intake of L7 is
		1	1	1		1	LITAL UICLALY ITILAKE UI LE IS

			Genetic Risk Group= 1 risk	associated with an
			alleles from CFH or ARMS2:	approximate 20% reduction
			early AMD: adjusted OR 0.94;	in risk of developing early
			95% CI 0.71-1.24	AMD among persons with a
			late AMD: adjusted OR 0.90:	high genetic risk of AMD.
			95% CI 0.47-1.73	0 0 0 0
			any AMD: adjusted OR 0.94:	
			95% CL 0 72-1 22	
			55/6 61 0.72 1.22	
			Genetic Bisk Groun= 2 risk	
			alleles from CEH or ABMS2:	
			aneles from citro Arrivisz.	
			Jate AMD: adjusted OP 0 70:	
			95% CI 0.58-1.29	
			any AND: adjusted OR 0.77;	
			95% CI 0.59-1.01	
			DMCC	
			BIVIES:	
			Genetic Risk Group= 0 risk	
			alleles from CFH or ARMS2:	
			early AMD: adjusted OR 0.99;	
			95% CI 0.60-1.65	
			late AMD: adjusted OR 0.30;	
			95% CI 0.03-2.64	
			any AMD adjusted OR 0.93;	
			95% CI 0.57-1.53	
			Genetic Risk Group= 1 risk	
			alleles from CFH or ARMS2:	
			early AMD: adjusted OR 0.85;	
			95% CI 0.60-1.21	
			late AMD: adjusted OR 1.34;	
			95% CI 0.55-3.23	
			any AMD: adjusted OR 0.90;	
			95% CI 0.64-1.27	
			Genetic Risk Group= 2 risk	
			alleles from CFH or ARMS2:	
			early AMD: adjusted OR 0.76;	
			95% CI 0.51-1.13	
			late AMD: adjusted OR 0.58;	
			95% CI 0.28-1.20	
			any AMD: adjusted OR 0.72;	
			95% CI 0.50-1.04	

4. Assessment of study quality

S6-2 (e) An assessment of the quality of each included study based on consideration of, as a minimum: (i) a clearly stated hypothesis; (ii) minimisation of bias; (iii) adequate control for confounding; (iv) the study participants' background diets and other relevant lifestyle factors; (v) study duration and follow-up adequate to demonstrate the health effect; (vi) the statistical power to test the hypothesis.

4.1 Quality Appraisal of Individual Studies

The Health Canada 2009 quality appraisal tool was used to assess the quality of included studies (<u>www.hc-sc.gc.ca/fn-an/legislation/guide-ld/health-</u> <u>claims_guidance-orientation_allegations-sante-eng.php</u> (accessed). Individual study score sheets are included in Appendix A. A summary of the scores for each study are provided in tables 6 and 7 below.

Study Reference	ltem 1	ltem 2	Item 3	Item 4	ltem 5	ltem 6	ltem 7	ltem 8	Total Score (max of 15)	Quality Rating
Randomised Controlled Trials										
Huang et al 2015	1	3	2	2	2	1	2	1	14	Higher
Bovier & Hammond 2015	0	1	2	2	2	1	2	0	10	Higher
Sabour-Pickett et al 2014	1	1	1	2	2	1	0	1	9	Higher
AREDS2 Research Group 2014	1	1	2	2	2	1	2	1	12	Higher
AREDS2 Research Group 2013	1	1	2	2	2	1	2	1	12	Higher
Richer et al 2011	1	4	2	2	2	1	2	1	15	Higher
Weigert et al 2011	1	1	2	2	2	1	1	1	11	Higher
Ma et al 2009	1	2	2	2	2	1	2	1	13	Higher
Yao et al 2013	1	1	2	0	2	1	1	1	9	Higher

*Note item numbers refer to the following: 1. Inclusion/exclusion criteria; 2. Group allocation; 3. Blinding; 4. Attrition; 5. Exposure/intervention; 6. Health effect;

7. Statistical analysis; 8. Potential confounders

									Total Score	Quality
Study Reference	ltem 1	Item 2	Item 3	Item 4	Item 5	Item 6	ltem 7	ltem 8	(max of 12)	Rating
Prospective Cohort Studies										
Flood et al 2002	1	2	1	2	0	0	1	2	9	Higher
Van Leeuwen et al 2005	1	2	2	1	1	0	1	2	11	Higher
Cho et al 2008	1	2	2	2	0	1	1	2	11	Higher
Tan et al 2008	1	2	1	2	0	0	1	2	9	Higher
Ho et al 2011	1	2	2	1	0	0	1	2	9	Higher
Wang et al 2014	1	2	2	2	0	0	1	2	10	Higher
Wu et al 2015	1	2	2	2	0	1	1	2	11	Higher
Lin et al 2017	1	2	2	1	1	1	1	2	11	Higher

Table 7: Summary of individual study quality based on the Health Canada quality appraisal tool for prospective observational studies

*Note item numbers refer to the following: 1. Inclusion/exclusion criteria; 2. Attrition; 3. Exposure; 4. Health outcome; 5. Blinding; 6. Baseline comparability of groups; 7. Statistical analysis; 8. Potential confounders
According to the Health Canada quality appraisal tools, all studies rated as higher quality studies. In RCTs results ranged from 8-15 (out of a possible 15 points). The main reasons for loss of points related to lack of reporting randomisation method and/or lack of allocation concealment (randomised controlled trials). In cohort studies results ranged from 8-11 (out of a possible 12 points). The main reason for loss of points related to a lack of reporting as to whether the outcome assessors were blinded to the exposure status of the individuals. While not reported, it is likely that in most of the studies the assessors were blinded. Some studies also lost a point due to the exposure only being assessed once during the study.

The individual checklist for each included study can be found in Appendix A.

4.1.1 Clearly stated hypothesis

All studies had clearly stated objectives which were related to the relationship between lutein and/or zeaxanthin intake and a measure of vision.

4.1.2 Minimisation of bias

As part of the exclusion criteria, case-control and cross-sectional studies were eliminated due to their higher risk of recall and selection bias compared to cohort and randomised controlled trials.

Selection bias was low to moderate in most studies with the majority of studies reporting good compliance and follow up. Eight of the cohorts included in the studies had loss to follow up rates of \leq 10% and a further 7 had rates of 10-20%. Only 2 of the included studies^{23,36} did not report details on loss to follow up.

Tan 2008 had a moderate rate of loss to follow up but researchers reported that these moderate losses were unlikely to effect the findings related to L/Z^{38} .

4.1.3 Adequate control of confounding

Observational (cohort) studies

All cohort studies included in this systematic review were ranked as higher quality and all studies controlled for some confounders during the assessment of the relationship between L/Z and AMD. Smoking is known to be the strongest modifiable risk factor for advanced AMD³⁹ and all studies measured this confounder and accounted for it at the data analysis stage.

It is noted that not all studies measured or accounted for all possible confounders. For example, while all studies adjusted for energy intake, only Wu et al 2015 considered the effect of a 'healthy eating index' to take into account the possibility that an individual with higher L/Z intakes may generally have a healthier diet which could account for some of the relationship in the study.

As with all observational studies, the possibility of residual confounding can not be ruled out.

The confounders accounted for in each individual study is listed in the footer to the quality appraisal table in appendix A.

Intervention studies were randomised controlled trials and smoking status was equally distributed between intervention and control groups.

4.1.4 Study participants' background diets and other relevant lifestyle factors

In the RCTs subjects were generally instructed to avoid consumption of food sources high in L/Z throughout the study and to keep to their habitual diet throughout the study period²⁵.

It is noted that in some studies a high background dietary intake of L/Z may have reduced the likelihood of finding an association between L/Z supplement and risk of AMD. For example in the AREDS2 RCT³⁴, a beneficial effect of taking the L/Z supplement (10mg L/2mg Z) was only found in individuals with the lowest quintile of dietary intake of L/Z (109-1388µg per day). In this group, comparison to no L/Z resulted in a HR of 0.74 (95% CI, 0.59-0.94; p=0.01) for progression to advanced AMD. For participants in the highest quintile of L/Z the corresponding HR was 0.90 (95% CI, 0.71-1.15; p=0.41. The background L/Z dietary intake levels in this study were much higher than intake levels reported to date and suggest adequate L/Z intake from diet may offer sufficient protection without a need for supplements. Intake levels in quintile 5 in the AREDS2 RCT were 4740-34 398 µg (4.7-34.4mg) per day³⁴.

Other relevant lifestyle factors such as smoking was taken into account in the observational studies as discussed in confounding.

4.1.5 Study duration and follow-up adequate to demonstrate the health effect

Cohort studies included in this review ranged in study duration from 2 years to 26 years of follow up. The shorter cohort studies (up to 7 years) were only long enough to report on the incidence/development of early AMD, whereas the longer cohort studies (10 years to 26 years) were more likely to report on intermediate and/or advanced AMD – the forms of AMD associated with more severe vision loss.

RCT studies ranged in study duration from 12 weeks to 5 years. These timeframes are likely adequate to demonstrate changes in contrast sensitivity, however longer study durations may have been required to adequately demonstrate L/Z supplementation effects on measures of visual acuity. When commenting on the non-significant increase in visual acuity observed in their study, Ma et al 2009 commented that the results might be due to delayed effect of lutein on visual acuity in a short time period (12 weeks)²⁴. Similarly, in Yao et al 2013, while L/Z supplementation significantly impacted serum concentrations at 30 days, observed increases in MPOD and contrast sensitivity were not evident until 6 months of supplementation, suggesting slow uptake of L/Z by the retina²³. As discussed in sections 5 and 6 of this report, the effects on vision are likely dependent on the increase in MPOD which is related to not only the timeframe of the study but the baseline MPOD levels of the participants. It may also take longer to show effects on measures of vision in general population compared to studies in patients with AMD.

4.1.6 The statistical power to test the hypothesis

Not all studies reported on the statistical power to test the hypothesis.

5. Assessment of the body of evidence and conclusion

S6-2 (f) An assessment of the results of the studies as a group by considering whether:

(i) there is a consistent association between the food or property of food and the health effect across all high quality studies;

(ii) there is a causal association between the consumption of the food or property of food and the health effect that is independent of other factors (with most weight given to welldesigned experimental studies in humans);

(iii) the proposed relationship between the food or property of food and the health effect is biologically plausible;

5.1 Consistency of association

Assessment of the consistency of the body of evidence was conducted using the Health Canada rating of consistency tool (<u>https://www.canada.ca/en/health-canada/services/food-nutrition/legislation-guidelines/guidance-documents/forms-guidance-document-preparing-submission-food-health-claims.html</u> (accessed 13.06.18). Results of this assessment can be found in tables 8-12.

Table 8: Rating of consistency in direction of effect for early age-related macular degeneration (AMD)

HEALTH OUTCOME 1 EARLY AMD - Total Population											
A. Total Number of Studies Considered: <u>6</u> (Lin, 2017, Cho, 2008 (3 cohorts), Flood 2002, van Leeuwen 2005)											
Direction of Effect											
B1. # studies from A showing trend for risk reduction $(p < 0.05)^1$: B2. # stud trend for in 0			A showing a in risk (p < 0.05):	B3. # studies from effect (p > 0.05): _	A showing no						
Study Quality											
C1. # higher quality studies from B1: 0	C2. # lower quality studies from B1: 0	C3. # higher quality studies from B2: <u>0</u>	C4. # lower quality studies from B2: <u>0</u>	C5. # higher quality studies from B3: <u>6</u>	C6. # lower quality studies from B3: 0						
Consistency Rating on Direction of Favourable Effect (Risk Reduction)			ing on Direction Effect	ing on No Effect							
<u>B1</u> x 100% = 0%	High (≥ 75%) □ Moderate (60-74%) □ Low (< 60%) X	<u>B2</u> x 100% = 0%	High (≥ 75%) ☐ Moderate (60-74%) ☐ Low (< 60%) X	<u>B3 x 100% =</u> 100% A	High (≥ 75%) X Moderate (60-74%) □ Low (< 60%)						
Consistency Rat	ing on Direction of	Favourable Effect	in Higher Quality	Studies							
C1 / (C1 + C3 + C	5) x 100% = 0%		High (≥ 75%) □ Moderate (60-74%) □ Low (< 60%)								

The 6 observational studies included in this rating of consistency did not show a statistically significant association between L/Z intake and early AMD incidence.

Genetic Susceptibility:

This consistency of association does not include results from the two studies which considered how genetic susceptibility may act as an effect modifier of the relationship between L/Z intake and early AMD development^{35,40}. Carriers of the high risk alleles for the genes CFH and LOC387715/HTRA1 have a significantly higher risk of AMD. The CFH Y402H variant increases the risk of AMD up to 11 times and the LOC387715 A69S variant up to 15 times.

Ho et al 2011 found heterozygous and non-carriers of the CFH Y402H allele showed non-significant trends with higher L/Z intake (P trend =0.37 and 0.13, respectively. Homozygous carriers of the CFH Y402H allele showed statistically significant trend with higher L/Z (P trend – 0.05). Authors concluded that L/Z can attenuate the incidence of early AMD in those carrying important genetic risk variants³⁵.

Wang et al, 2014 used pooled longitudinal data from the BMES and the Rotterdam cohorts and assessed the effect modification between AMD genetic susceptibility and dietary intake of antioxidants including L/Z^{40} . In pooled data analyses, a significant interaction between AMD genetic risk status and LZ intake with respect early AMD (P=0.002). Risk alleles of the CFH and ARMS2 genes were included in this study. Authors concluded that by using data from 2 population-based cohorts, they showed consistent evidence that participants with ≥ 2 risk alleles of either or both the CFH-rs1061170 or AMRS2-rs10490924 had a significantly reduced risk of early AMD if they frequently consumed food items rich in L/Z^{40} . In the pooled analysis, they found a 22% risk reduction in early AMD in participants with high genetic risk.

Table 9: Rating of consistency in direction of effect for intermediate and late age-related macular
degeneration (AMD)

HEALTH OUTCO	HEALTH OUTCOME: Intermediate and Advanced AMD										
A. Total Number	of Studies Conside	ered: <u>12 studies</u>	(from 3 papers) (Wu, 2015; Cho 201	<u>8; Tan 2008)</u>						
Direction of Effect											
B1. # studies from for risk reduction	n A showing trend (p < 0.05) ¹ :	B2. # studies from trend for increase	A showing a in risk (p < 0.05):	B3. # studies from A showing no effect (p > 0.05): <u>9</u>							
Study Quality											
C1. # higher quality studies from B1: 3	C2. # lower quality studies from B1: 0	C3. # higher quality studies from B2: <u>0</u>	C4. # lower quality studies from B2: <u>0</u>	C5. # higher quality studies from B3: <u>9</u>	C6. # lower quality studies from B3: 0						
Consistency Ration of Favourable Effection	ing on Direction fect (Risk	Consistency Rati of Unfavourable	ng on Direction Effect	Consistency Rating on No Effect							
<u>B1</u> x 100% = 25 A	High (≥ 75%) □ Moderate (60-74%) □ Low (< 60%) X	<u>B2</u> x 100% = 0 A	High (≥ 75%) Moderate (60-74%) Low (< 60%) X	<u>B3</u> x 100% = 75 A	High (≥ 75% X Moderate (60-74%) □ Low (< 60%) □						
Consistency Rat	ing on Direction of	Favourable Effect	in Higher Quality	Studies							
C1 / (C1 + C3 + C	5) x 100% = 25%		High (≥ 75%) Moderate (60-74% Low (< 60%)	6)							

Overall, observational studies do not consistently show a statistically significant association between L/Z intake and intermediate or late AMD incidence. Although when statistically significant trends for risk reduction of AMD with higher L/Z intakes were found they were for advanced AMD.

Genetic Susceptibility:

As with the early AMD evidence, the consistency of association for L/Z intake and the development of intermediate or late AMD did not include results from studies looking at the relationship by genetic susceptibility. Wang 2014 found the highest tertile intakes of LZ were non-significantly associated with an approximately 35% risk reduction in late AMD while there was a significant reduced risk of any AMD⁴⁰.

Table 10: Rating of consistency in direction of effect for intervention studies for late age-related macular degeneration (AMD)

HEALTH OUT	HEALTH OUTCOME: Late AMD											
A. Total number RCTs included: _4												
Statistical Significance (SS)												
B1. # studies	with a SS effect	of exposure (p<0).05): <u>2</u>	B2. # studies v	with a non-SS e	ffect of exposure	(p>0.05):					
Direction of	Effect ¹											
C1. # studies from B1 with a SS favourable effect of the exposure: _2C2. # studies from B1 with a SS unfavourable effect of the exposure: _0		C3. # studies f a non-SS favou of the exposu	rom B2 with urable effect re: <u>2</u>	C4. # studies from B2 showing either a non-SS unfavourable effect or no distinguishable effect of the exposure: 0								
Study Qualit	Study Quality											
D1. # higher quality studies from C1: 2	D2. # lower quality studies from C1: 0	D3. # higher quality studies from C2: 0	D4. # lower quality studies from C2: <u>0</u>	D5. # higher quality studies from C3: <u>2</u>	D6. # lower quality studies from C3: _0	D7. # higher quality studies from C4: <u>0</u>	D8. # lower quality studies from C4: <u>0</u>					
Consistency	Rating on Direc	tion of Favourab	le Effect	•	•	•	•					
(C1 + C3) / A	1 x 100 % = 100	%		High (≥ 75%) X Moderate (60-74%)□ Low (< 60%) □								
Consistency	Rating on Direc	tion of Favourab	le Effect in High	er Quality Studi	es							
(D1 + D5) / (D1 + D3 + D5 + I	D7) x 100% = 100)%	High (≥ 75%) X Moderate (60-74%) □ Low (< 60%) □								

Results from intervention studies were highly consistent in showing a statistically significant favourable effect of LZ on development of late AMD. Evidence here is from the AREDS2 RCT^{33,34}. In the primary analysis, compared with the placebo group (who still had a median L/Z background dietary intake level of 2725μ g/day) L/Z supplementation (additional 12mg/day) demonstrated no statistically significant reduction in progression to advanced AMD (HR: 0.90 (98.7% CI 0.76-1.07) p=0.12)³⁴. It was noted, however, that AREDS2 participants had a significantly higher background dietary intake and average serum levels of L/Z compared to the general population (p<0.001)³³. In subgroup analysis a statistically

significant favourable effect was found in those with the lowest intake of dietary L/Z (<1428µg/day). For persons in this first quintile, comparison of L/Z supplement vs no L/Z supplement resulted in an HR of 0.74 (95% CI, 0.59-0.94, p=0.01)³⁴. Figure 3 shows the main effects stratified by quintiles of dietary intake of L/Z.

Figure 3: Comparison of the Main Effects of Lutein + Zeaxanthin vs No Lutein + Zeaxanthin, Stratified by Quintiles of Dietary Intake of Lutein + Zeaxanthin, on Progression to Advanced Age-Related Macular Degeneration (AMD)³⁴

^aMedian intake of dietary lutein + zeaxanthin (μ g/1000 kcal per day).

It has been suggested that this subgroup result is consistent with the hypothesis that supplements may be more effective when the background dietary intake is below a biologically sufficient threshold³⁶.

HEALTH OUTCOME: VISUAL ACUITY										
A. Total num	ber studies incl	uded: <u>6 (Huan</u>	g, Richer; Yao; V	Veigert; Ma, ARE	DS 2014)					
Statistical Significance (SS)										
B1. # studies	with a SS effect	of exposure (p<0).05): <u>1</u>	B2. # studies v	with a non-SS e	ffect of exposure	(p>0.05):			
Direction of	Direction of Effect ¹									
C1. # studies from B1 with a SS favourable effect of the exposure:C2. # studies from B1 with a SS unfavourable effect of the exposure:0		C3. # studies f a non-SS favou of the exposur	rom B2 with urable effect re: <u>4</u>	C4. # studies from B2 showing either a non-SS unfavourable effect or no distinguishable effect of the exposure: 1						
Study Quality										
D1. # higher quality studies from C1: <u>1</u>	D2. # lower quality studies from C1:	D3. # higher quality studies from C2: <u>0</u>	D4. # lower quality studies from C2:0_	D5. # higher quality studies from C3:4 D6. # lower quality studies from C3: 0		D7. # higher quality studies from C4: 1	D8. # lower quality studies from C4: <u>0</u>			
Consistency	Rating on Direc	tion of Favourabl	e Effect							
(C1 + C3) / A	(C1 + C3) / A1 x 100 % = 83%			High (≥ 75%) Moderate (60-74%) Low (< 60%)		x				
Consistency	Rating on Direc	tion of Favourabl	e Effect in High	er Quality Studi	es					
(D1 + D5) / (D1 + D3 + D5 + D7) x 100% = 83%				High (≥ 75%) Moderate (60-74%) Low (< 60%)						

Table 11: Rating of consistency in dire	ection of effect of LZ on visual acuity
---	---

While only 1 of the 6 included studies measuring visual acuity demonstrated a statistically significant favourable effect of L/Z, the other 5 showed non-favourable effects. As discussed in the quality section of this systematic review, the lack of statistically significant effects may be due to inadequate length of the studies.

Furthermore evidence from Weigert et al 2011 found that there was a significant correlation between the percentage of change in MPOD after 6 months and the change in visual acuity after 6 months (p=0.013)³⁰. This indicates that patients with a pronounced increase in MPOD also improved their visual function. Patients who had baseline MPODS of 0.5 or higher showed almost no increase in MPOD during lutein supplementation, indicating that lutein incorporation in the retina is saturable. This is supported by results from Huang et al 2015 which showed the MPOD and visual functions (visual acuity and contrast sensitivity) were similar between the 10mg lutein and the 20mg lutein groups at 2 years. This indicates that the incorporation of L/Z into the retinal tissue is not driven simply by diffusion but is influenced by unique transport proteins in serum and in human retina²². While higher doses of L/Z can rapidly increase serum and macular concentrations, lower doses can reach and maintain an efficient macular pigment level in the long term²².

HEALTH OUT	COME: CONTR	AST SENSITIVITY									
A. Total num	A. Total number studies included: 5 (Huang, Richer; Sabour-Pickett; Ma; Yao)										
Statistical Si	gnificance (SS)										
B1. # studies	with a SS effect	t of exposure (p<0).05): 4	B2. # studies v	with a non-SS e	ffect of exposure	(p>0.05): <u>1</u>				
Direction of Effect ¹											
C1. # studies from B1 with a SS favourable effect of the exposure:C2. # studies from B1 with a SS unfavourable effect of the exposure:0			C3. # studies f a non-SS favor of the exposur	C3. # studies from B2 with a non-SS favourable effect of the exposure: <u>1</u>		C4. # studies from B2 showing either a non-SS unfavourable effect or no distinguishable effect of the exposure: 0					
Study Quality											
D1. # higher quality studies from C1: <u>4</u>	D2. # lower quality studies from C1:0	D3. # higher quality studies from C2: <u>0</u>	D4. # lower quality studies from C2: <u>0</u>	D5. # higher quality studies from C3: <u>1</u>	D6. # lower quality studies from C3: 	D7. # higher quality studies from C4: <u>0</u>	D8. # lower quality studies from C4: <u>0</u>				
Consistency	Rating on Direc	tion of Favourab	e Effect								
(C1 + C3) / A	1 x 100 % = 100	%		High (≥ 75%) Moderate (60 Low (< 60%)	High (≥ 75%) Moderate (60-74%) Low (< 60%)		x □ □				
Consistency	Rating on Direc	tion of Favourabl	e Effect in High	er Quality Studi	es						
(D1 + D5) / (D1 + D3 + D5 + I	D7) x 100% = 100	1%	High (≥ 75%) Moderate (60-74%) Low (< 60%)		x					

Table 12: Rating of consistency in direction of effect of LZ on visual acuity

Demonstrating health effects of L/Z intake on measures of contrast sensitivity and visual acuity appear to be dependent on changes in MPOD. Results from Huang et al 2015 showed that contrast sensitivity

could only improve after MPOD had reached and maintained a relatively high level. This is supported by other studies linking changes in MPOD to visual performance^{41,42}.

Overall, observational studies inconsistently suggest a possible association between LZ and AMD. The inconsistent nature of these findings may be due to residual confounding, or the reliability of dietary data collected in some studies. For example measurement error including the use of incomplete food composition data may have underestimated L/Z intakes which could have biased the findings towards the null (no effect)⁴³. Furthermore, as stated by Wu et al 2015, the observational evidence precludes the level of cause inference that could be derived from randomised controlled trials³⁶.

Intervention studies consistently suggest favourable effects of higher intakes of L/Z on progression to late AMD (although not always statistically significant) as well as measures of vision including visual acuity and contrast sensitivity (statistically significant).

5.2 Causal association

Tables 13 includes a summary of the findings from the studies assessing early age-related macular degeneration (AMD).

Reference and Quality	Design •Prospective cohort	Study Population and Final	Centile	Exposure (Dietary Intake/	Incidence of Health Outcome	Multi-variate Adjusted Risk Ratios Between Different Centiles			
Score	•Nested case- control	Sample Size		Circulating Levels)		Hazards Ratio	Relative Risk	95% CI	P _{trend}
HEALTH OU	FCOME – Early AN	1D							
Lin et al 2017 (total score 11)	Exploratory analysis of a prospective cohort	Men and women Mean age: 54 years	1 st Quintile of L/Z intake	251- 456ug/1000 kcal	NR	N/A	1.00	N/A	0.91
		Final sample: 8821	2 nd Quintile of L/Z intake	660- 867ug/1000 kcal	NR	N/A	1.07	0.81- 1.42	
			3 rd Quintile of L/Z intake	1082- 1305ug/100 Okcal	NR	N/A	1.07	0.80- 1.42	
			4 th Quintile of L/Z intake	1592- 2027ug/100 Okcal	NR	N/A	1.09	0.81- 1.46	
			5 th Quintile of L/Z intake	2910-4936 ug/1000kcal	NR	N/A	1.02	0.76- 1.38	

Table 13: Summary of study findings from observational studies on early AMD

Cho et al 2008 (total score 11)	Cho et al Prospective 2008 cohort – (total Nurses Health score 11) Study	Women Mean age: 59 years Final sample: 71494	1 st Quintile of L/Z intake (median	1349ug/d for women;	NR	N/A	1.00	N/A	0.62
			2 nd Quintile of L/Z intake (median)	2052ug/d for women;	NR	N/A	0.84	0.62- 1.12	
			3 rd Quintile of L/Z intake (median)	2653ug/d for women;	NR	N/A	0.93	0.69- 1.23	
		4 th Quintile of L/Z intake (median)	3389ug/d for women;	NR	N/A	0.87	0.65- 1.17		
		5 th Quintile of L/Z intake (median)	4930ug/d for women;	NR	N/A	0.89	0.66- 1.20		
Cho et al Pros 2008 coho (total HPFS score 11)	Prospective cohort HPFS	Men Mean age: 62 years Final	1 st Quintile of L/Z intake (median	1431ug/d for men;	NR	N/A	1.00	N/A	0.26
	sample: 41564	sample: 41564	2 nd Quintile of L/Z intake (median)	2236ug/d for men	NR	N/A	1.64	1.04- 2.57	
			3 rd Quintile of L/Z intake (median)	2953ug/d for men;	NR	N/A	1.38	0.86- 2.20	
			4 th Quintile of L/Z intake (median)	3835ug/d for men	NR	N/A	0.97	0.58- 1.61	
			5 th Quintile of L/Z	5712ug/d for men	NR	N/A	1.66	1.04- 2.64	

Cho et alProspective2008cohort(totalPooled (NHS +score 11)HPHS)	NHS + HPFS Cohorts pooled Final	1 st Quintile of L/Z intake (median	1349ug/d for women; 1431ug/d for men;	NR	N/A	1.00	N/A	0.74	
		sample: 113058	2 nd Quintile of L/Z intake (median)	2052ug/d for women; 2236ug/d for men	NR	N/A	1.14	0.59- 2.21	
			3 rd Quintile of L/Z intake (median)	2653ug/d for women; 2953ug/d for men;	NR	N/A	1.08	0.74- 1.57	
		4 th Quintile of L/Z intake (median)	3389ug/d for women; 3835ug/d for men	NR	N/A	0.90	0.691. 15		
		5 th Quintile of L/Z intake (median)	4930ug/d for women; 5712ug/d for men	NR	N/A	1.18	0.64- 2.17		
Flood et al 2002 (total score 9)	Prospective cohort	BMES cohort Final sample size at 5	1 st Quintile of L/Z intake	288ug (151/1000kc al)	NR	N/A	OR 1.0	NA	0.93
		years: 2335	2 nd Quintile of L/Z intake	510ug (259/1000kc al)660- 867ug/1000 kcal	NR	N/A	OR 0.9	0.5- 1.5	
			3 rd Quintile of L/Z intake	733ug (351/1000kc al)	NR	N/A	OR 0.8	0.5- 1.4	
			4 th Quintile of L/Z intake	967ug (478/1000kc al)	NR	N/A	OR 0.7	0.4- 1.3	
	1	1			1	1.		1	1

Van Prospective Leeuwen cohort	Rotterdam cohort	Q1	1.4±0.3mg/d (range≤1.8)	NR	1.0	NA	NA	0.65	
et al 2005 (total score 11)	ital pre 11)	Men and women: 55 years or older	Q2	2.0±0.1mg/d (range>1.8- ≤2.2)	NR	<1.0			
		Final sample size: 4170	Q3 nple 70	2.5±0.2mg/d (range>2.2- ≤2.8)	NR	>1.0			
			Q4	3.6±1.3mg/d (range>2.8)	NR	1.0			
Genetic Risk	Studies								
Wang et al 2014 (total score 10)	BMES Cohort	Genetic Risk group =0 Risk Alleles CFH or ARMS2	Highest Tertile vs other 2 tertiles	BMES: T1: mean 442ug/d (range 0- 642)	18.9%	N/A	OR 0.99 Early AMD	0.60- 1.65	NR
		Genetic Risk group =1 Risk Alleles CFH or ARMS2		T2: mean 810ug/d (range 642- 1005) T3: mean 1425ug/d (range 1005- 4870)	42.9%	N/A	OR 0.85 Early AMD	0.60- 1.21	
		Genetic Risk group =2 Risk Alleles CFH or ARMS2			38.2%	N/A	OR 0.76 Early AMD	0.51- 1.13	
Wang et al 2014 Cohort (total score 10)	Rotterdam Cohort	Genetic Risk group =0 Risk Alleles CFH or ARMS2	Highest Tertile vs other 2 tertiles	RS: T1: mean 1478ug/d (range 101-	20.8%	N/A	OR 1.74 Early AMD	1.21- 2.50	NR
		Genetic Risk group =1 Risk Alleles CFH or ARMS2		1918) T2: mean 2252ug/d (range 1919- 2610) T3: mean	38%	N/A	OR 0.94 Early AMD	0.71- 1.24	-
		Genetic Risk group =2 Risk Alleles CFH or ARMS2		3362ug/d (range 2610- 32645)	41.2%	N/A	OR 0.78 Early AMD	0.59- 1.05	

Wang et al 2014 (total score 10)	Wang et al 2014 (total score 10) Pooled (BMES score 10) Genetic Ri group =0 Risk Alleler CFH or ARMS2 Genetic Ri group =1 Risk Alleler CFH or ARMS2 Genetic Ri group =2 Risk Alleler CFH or ARMS2	Genetic Risk group =0 Risk Alleles CFH or ARMS2	Highest Tertile vs other 2 tertiles	RS: T1: mean 1478ug/d (range 101- 1918) T2: mean 2252ug/d (range 1919- 2610) T3: mean	NR	N/A	OR 1.47 Early AMD	1.09- 1.97	P= 0.00 2
		Genetic Risk group =1 Risk Alleles CFH or ARMS2	T2: mean 2252ug/d (range 19 2610)		NR	N/A	OR 0.91 Early AMD	0.73- 1.13	
		Genetic Risk group =2 Risk Alleles CFH or ARMS2		3362ug/d (range 2610- 32645)	NR	N/A	OR 0.78 Early AMD	0.62- 0.99	
Ho et al 2011 (total score 9)	Prospective cohort	Overall Sample population n=2167	Tertile 1 L/Z Intake	0.08- 1.90mg/d (mean 1.47mg/d)	50/269	1.0	N/A	N/A	0.13
		Non-carrier CFHY402H n=820	Tertile 2 L/Z Intake	1.91- 2.61mg/d (mean 2.26mg/d)	63/290	1.3	N/A	0.89- 1.88	
		Tertile 3 L/Z Intake	2.62- 17.69mg/d (mean 3.38mg/d)	60/261	1.39	N/A	0.96- 2.03		
Ho et al 2011 (total score 9)	Prospective cohort	Overall Sample population n=2167	Tertile 1 L/Z Intake	0.08- 1.90mg/d (mean 1.47mg/d)	69/284	1.54	N/A	1.07- 2.21	0.37
		CFHY402H heterozygou s n=858	Tertile 2 L/Z Intake	1.91- 2.61mg/d (mean 2.26mg/d)	71/272	1.63	N/A	1.13- 2.34	
			Tertile 3 L/Z Intake	2.62- 17.69mg/d (mean 3.38mg/d)	67/302	1.33	N/A	0.92- 1.93	
Ho et al 2011 (total score 9)	Prospective cohort	Overall Sample population n: 2167	Tertile 1 L/Z Intake	0.08- 1.90mg/d (mean 1.47mg/d)	23/65	2.63	N/A	1.60- 4.32	0.05
		Homozygous CFHY402H n =213	Tertile 2 L/Z Intake	1.91- 2.61mg/d (mean 2.26mg/d)	31/85	2.15	N/A	1.38- 3.42	
			Tertile 3 L/Z Intake	2.62- 17.69mg/d (mean 3.38mg/d)	16/63	1.72	N/A	0.97- 3.03	

Reference and Quality Score	Design •Prospective cohort	Study Population and Final	Centile	Exposure (Dietary Intake/	Incidenc e of Health	Multi-v Bet	ariate Adjus ween Differe	ted Risk Ra ent Centile	atios s
	Nested case- control	Sample Size		Circulating Levels)	Outcom e	Hazards Ratio	Relative Risk	95% CI	P _{trend}
HEALTH OUTO	OME – Intermedi	ate and Advance	ed AMD	•	•				
Wu et al Prospective 2015 (total cohort score 11)	Prospective cohort	Nurses Health Study Sample size:	1 st Quintile of L/Z intake (median)	1408µg/d	NR	N/A	1.0	N/A	0.003 Advan ced
	63 443	2 nd Quintile of L/Z intake (median)	2098µg/d	NR	N/A	0.84	0.67- 1.04	AMD	
		3 rd Quintile of L/Z intake (median)	2680µg/d	NR	N/A	0.78	0.63- 0.98		
		4 th Quintile of L/Z intake (median)	3389µg/d	NR	N/A	0.72	0.57- 0.91		
			5 th Quintile of L/Z intake (median)	4834µg/d	NR	N/A	0.68	0.54- 0.87	
Wu et al 2015 (total score 11)	Prospective cohort	tive Nurses Health Study Sample size: 63 443	1 st Quintile of L/Z intake (median)	1408µg/d	NR	N/A	1.0	N/A	0.73 Interm ediate
			2 nd Quintile of L/Z intake (median)	2098µg/d	NR	N/A	0.82	0.67- 1.00	AMD
		3 rd Quintile of L/Z intake (median)	2680µg/d	NR	N/A	0.91	0.74- 1.11		
		4 th Quintile of L/Z intake (median)	3389µg/d	NR	N/A	0.93	0.76- 1.14		
			5 th Quintile of L/Z intake (median)	4834µg/d	NR	N/A	0.90	0.72- 1.11	

Table 14: Summary of study findings from observational studies on intermediate and advanced AMD

Wu et al 2015 (total score 11)	Wu et al Prospective 2015 (total cohort score 11)	Health Professional Follow Up Study Sample size: 68 603	1 st Quintile of L/Z intake (median)	1511µg/d	NR	N/A	1.0	N/A	0.71 Advan ced
			2 nd Quintile of L/Z intake (median)	2313µg/d	NR	N/A	1.05	0.75- 1.47	AMD
			3 rd Quintile of L/Z intake (median)	3012µg/d	NR	N/A	1.06	0.75- 1.49	
			4 th Quintile of L/Z intake (median)	3864µg/d	NR	N/A	1.06	0.75- 1.50	
			5 th Quintile of L/Z intake (median)	5629µg/d	NR	N/A	1.08	0.75- 1.55	
Wu et al 2015 (total score 11)	Prospective cohort	Health Professional Follow Up Study Sample size: 68 603	1 st Quintile of L/Z intake (median)	1511µg/d	NR	N/A	1.0	N/A	0.65 Interm ediate
			2 nd Quintile of L/Z intake (median)	2313µg/d	NR	N/A	1.27	0.92- 1.76	AMD
			3 rd Quintile of L/Z intake (median)	3012µg/d	NR	N/A	1.13	0.81- 1.58	
			4 th Quintile of L/Z intake (median)	3864µg/d	NR	N/A	1.20	0.84- 1.70	
			5 th Quintile of L/Z intake (median)	5629µg/d	NR	N/A	1.08	0.75- 1.55	

Wu et al 2015 (total score 11)	Prospective cohort	Pooled NHS + HPFS Sample size:	1 st Quintile of L/Z intake (median)	NR	NR	N/A	1.0	N/A	0.04 Advan ced
		132046	2 nd Quintile of L/Z intake (median)	NR	NR	N/A	0.90	0.75- 1.08	AMD
			3 rd Quintile of L/Z intake (median)	NR	NR	N/A	0.86	0.71- 1.03	
			4 th Quintile of L/Z intake (median)	NR	NR	N/A	0.81	0.67- 0.99	
			5 th Quintile of L/Z intake (median)	NR	NR	N/A	0.79	0.64- 0.97	
Wu et al 2015 (total score 11)	Prospective cohort	Pooled NHS + HPFS Sample size: 132046	1 st Quintile of L/Z intake (median)	NR	NR	N/A	1.0	N/A	0.99 Inter media te
			2 nd Quintile of L/Z intake (median)	NR	NR	N/A	0.92	0.78- 1.10	AMD
			3 rd Quintile of L/Z intake (median)	NR	NR	N/A	0.96	0.81- 1.14	
			4 th Quintile of L/Z intake (median)	NR	NR	N/A	0.96	0.80- 1.14	
			5 th Quintile of L/Z intake (median)	NR	NR	N/A	0.97	0.81- 1.16	

Cho et al 2008 (total score 11)	Prospective cohort Nurses Health Study	Sample size: 71494	1 st Quintile of L/Z intake (median)	1349μg/d Women 1431 μg/d men	NR	N/A	1.0	N/A	0.42 Neov ascula r AMD
			2 nd Quintile of L/Z intake (median)	2052µg/d women 2236µg/d men	NR	N/A	0.89	0.62- 1.29	
			3 rd Quintile of L/Z intake (median)	2653µg/d Women 2953µg/d men	NR	N/A	0.85	0.58- 1.24	
			4 th Quintile of L/Z intake (median)	3389µg/d women 3835µg/d men	NR	N/A	1.05	0.73- 1.52	
			5 th Quintile of L/Z intake (median)	4930µg/d women 5712µg/d men	NR	N/A	0.79	0.53- 1.17	
Cho et al 2008 (total score 11)	Prospective cohort Health Professiona Is Follow Up	Sample size: 41564	1 st Quintile of L/Z intake (median)	1349μg/d Women 1431 μg/d men	NR	N/A	1.0	N/A	0.19 Neova scular AMD
			2 nd Quintile of L/Z intake (median)	2052µg/d women 2236µg/d men	NR	N/A	0.67	0.41- 1.09	
			3 rd Quintile of L/Z intake (median)	2653µg/d Women 2953µg/d men	NR	N/A	0.83	0.51- 1.32	
			4 th Quintile of L/Z intake (median)	3389µg/d women 3835µg/d men	NR	N/A	0.85	0.53- 1.36	
			5 th Quintile of L/Z intake (median)	4930µg/d women 5712µg/d men	NR	N/A	0.62	0.37- 1.05	

Cho et al 2008 (total score 11)	Prospective cohort Pooled Data (NHS and HPFS)	Sample size: 113058	1 st Quintile of L/Z intake (median)	1349μg/d Women 1431 μg/d men	NR	N/A	1.0	N/A	0.14 Advan ced AMD
			2 nd Quintile of L/Z intake (median)	2052µg/d women 2236µg/d men	NR	N/A	0.80	0.60- 1.08	
			3 rd Quintile of L/Z intake (median)	2653µg/d Women 2953µg/d men	NR	N/A	0.84	0.62- 1.13	
			4 th Quintile of L/Z intake (median)	3389µg/d women 3835µg/d men	NR	N/A	0.97	0.73- 1.30	
			5 th Quintile of L/Z intake (median)	4930μg/d women 5712μg/d men	NR	N/A	0.72	0.53- 0.99	
Tan et al 2008 (total score 9)	Prospective cohort BMES	Sample size: 2454	Tertile 1 L/Z Intake	NR	19/673	N/A	1.00	N/A	0.36 Advan
			Tertile 2 L/Z Intake	NR	23/682	N/A	1.11	0.58- 2.13	ced AMD (Total)
			Tertile 3 L/Z Intake	≥942 µg/d	17/680	N/A	0.72	0.34- 1.50	
Tan et al 2008 (total score 9)	Prospective cohort BMES	Sample size: 2454	Tertile 1 L/Z Intake	NR	13/675	N/A	1.0	N/A	0.061 Neova
			Tertile 2 L/Z Intake	NR	16/684	N/A	1.12	0.52- 2.41	scular AMD only
			Tertile 3 L/Z Intake	≥942 µg/d	9/681	N/A	0.37	0.13- 1.05	

GENETIC RISK STUDY											
Wang et al BMES C 2014 (total score 10)	Wang et al 2014 (total iscore 10)BMES CohortGenetic Risk group =0 Risk AllelesHighestT1: mean 442ug/d (range 0- 	Highest Tertile vs other 2 tertiles	BMES: st T1: mean e vs 442ug/d 2 (range 0- es 642)	9.3%	N/A	OR 0.30 Late AMD	0.03- 2.64	NR			
		T2: mean 810ug/d (range 642-1005) T3: mean	36.1%	N/A	OR 1.34 Late AMD	0.55- 3.23					
		54.7%	N/A	OR 0.58 Late AMD	0.28- 1.20						
Wang et al 2014 (total score 10)Rotterdam CohortTotal =5383Genetic Risk group =0 Risk Alleles CFH or ARMS2Genetic Risk group =1 Risk Alleles CFH or ARMS2	Total =5383 Genetic Risk group =0 Risk Alleles CFH or ARMS2	Highest Tertile vs other 2 tertiles	RS: T1: mean 1478ug/d (range 101-1918) T2: mean 2252ug/d (range 1919- 2610) T3: mean 3362ug/d	5.2%	N/A	OR 1.18 Late AMD	0.20-6.82	NR			
	Genetic Risk group =1 Risk Alleles CFH or ARMS2			37.4%	N/A	OR 0.90 Late AMD	0.47- 1.73				
		Genetic Risk group =2 Risk Alleles CFH or ARMS2		(range 2610- 32645)	57.4%	N/A	OR 0.70 Late AMD	0.38- 1.29			
Wang et al 2014 (total score 10)	Wang et al Pooled (BMES Genetic 2014 (total + Rotterdam) group = score 10) Alleles C ARMS2	Genetic Risk group =0 Risk Alleles CFH or ARMS2	Highest Tertile vs other 2	RS: T1: mean 1478ug/d	NR	N/A	OR 0.65 Early AMD	0.17- 2.43	NS Advance d AMD		
	Genetic Risk group =1 Risk Alleles CFH or ARMS2	tertiles	(range 101-1918) T2: mean 2252ug/d (range	NR	N/A	OR 1.06 Early AMD	0.63- 1.79				
		Genetic Risk group =2 Risk Alleles CFH or ARMS2		1919- 2610) T3: mean 3362ug/d (range 2610- 32645)	NR	N/A	OR 0.64 Early AMD	0.40- 1.03			

Although the results from observational studies for an association between L/Z and advanced AMD are mixed, Wu et al 2015 concluded that higher intakes of bioavailable carotenoids are associated with a 40% lower risk of advanced AMD. In this study, unlike the others include in this review, researchers included an analysis using the predicted plasma scores (which takes into account the bioavailability of L/Z and not just the quantity). When predicted plasma scores were used in the analysis, this strengthened the association between L/Z and AMD. This study, in particular, which showed a linear relationship between LZ and advanced AMD lends further support to a temporal association between L/Z and protection against the development of advanced AMD and is suggestive of a causal role³⁶.

Reference and Quality	ReferenceDesignSampleOutcomeand QualitySizefor which		Outcome for which	Study Duration	Food Matrix	Exposure (Food/Bioa	Magnitude of Effect ²		P-value ⁶
Score			study was powered ¹			ctive substance Intake Per Day)	Number ^{3,4}	Perce nt ^{3,5}	
HEALTH OUT	COME – LA	FE/ADVANC	ED AMD						
Age- Related Eye Disease Study 2 Research Group et al 2014 (total score 12)	вст	4203	NA	5 vears	Supplem	10mg lutein and 2mg	HR 0.87 (95%		L/Z vs. no L/Z P=0.04
Age- Related Eye Disease Study 2 Research Group et al 2013 (total score 12)	RCT	4203	Statistical power of at least	5 years	Supplem ents	10mg lutein and 2mg zeaxanthin	HR 0.90 (98.7% Cl 0.76-1.07)	NA	L/Z vs. placebo* P=0.12
Age- Related Eye Disease Study 2 Research Group et al 2013 (total score 12)	RCT	4203	90% was used to detect a 25%reduct ion in the progressio n to advanced AMD	5 years	Supplem ents + dietary intake	Supplemem t 10mg L + 2mg Z + dietary intake: Q1: median 696ug/d (Range 552- 823)	HR 0.74 (95% Cl 0.59-0.94)	NA	P=0.01

Table 15: Summary of study findings from randomised controlled trials on late/advanced AMD

*Participants in the 'placebo' group were participants in the AREDs trial and therefore still received the AREDS supplement (either within or outside of the secondary randomisation) – there was therefore no true placebo group.

As discussed above, compared with the general population participants sampled in the National Health and Nutrition Survey (NHANES) 2005-2006 of similar ages, AREDS2 participants had a significantly higher serum levels of L/Z (p<0.001)³⁴. Comparison of dietary intakes with other cohorts, suggested that AREDS2 participants are relatively well nourished³⁴. In a report that evaluated the carotenoid intake of 18 cohorts, the median level of dietary intake of L/Z in the AREDS2 participants (~2600µg/day) was exceeded in only 2 of these 18 study cohorts (Nurses Health Study: 3012µg/day and Women's Health Study: 2869µg/day)⁴⁴. The background dietary intake of L/Z in the AREDS2 population may have masked the effect of the L/Z intervention in the higher quintile groups.

For persons in the lowest quintile, comparison of L/Z vs no L/Z resulted in an HR of 0.74 (95% CI, 0.59-0.94; p=0.01) for progression to advanced AMD. Whereas among people with background diets in quintiles 2-5, there was no significant protective effect of L/Z vs no L/Z (HR range 0.82-0.94, p>0.05).

Summary of study findings from intervention studies per health outcome										
Reference and	Design	Sample Size	Outcome for which	Study Duration	Food Matrix	Exposure (Food/Bio	Magnitude	of Effect ²	P-value ⁶	
Quality Score		0120	study was powered ¹			active substance Intake Per Day)	Number ^{3,4}	Percent ³		
HEALTH OUT	COME: VIS	UAL ACUITY								
Age- Related Eye Disease Study 2 (AREDS2) Research Group et al 2014 (total score 12)	RCT	4203	NA	5 years	Supplem ent	10mg lutein and 2mg zeaxanthin	NA	NA	NS p>0.05	
Richer et al 2011 (total score 15)	RCT	60	NA	1 year	Supplem ents	8mg zeaxanthin + 9mg lutein	+6.0 letters	NA	high- contrast visual acuity P=0.05 (from baseline)	
Richer et al 2011 (total score 15)	RCT	60	NA	1 year	Supplem ents	8mg zeaxanthin + 9mg lutein	+8.8 letters	NA	low- contrast visual acuity P=0.02 (from baseline)	
Weigert G et al 2011 (total score 11)	RCT	110	Statistical power of 80% was used to detect 4% difference	6 months	Supplem ents	in months 1-3: 20mg lutein in months 4-6 10mg lutein	+2.1±0.4lett ers	NA	Visual acuity P=0.07	
Yao et al 2013 (total score 9)	RCT	120	NA	1 year	Supplem ents	20mg lutein	From 0.038±0.16 to 0.036±0.24 (-0.002)	Calculat ed =5.3%	Best corrected visual acuity P=0.3356	

 Table 16: Summary of study findings from randomised controlled trials on visual acuity

Reference	Design	Sample	Outcome	Study	Food	Exposure	Magnitude	of Effect ²	P-value ⁶
and Quality Score		Size	for which study was powered ¹	Duration	Matrix	(Food/Bio active substance Intake Per Day)	Number ^{3,4}	Percent ³	
HEALTH OU	TCOME: C	ONTRAST S	ENSITIVITY						
Richer et al 2011 (total score 15)	RCT	60	NA	1 year	Supplem ents	8mg zeaxanthin + 9mg lutein	NA	+20%	contrast sensitivit y function P>0.05
Ma et al 2009 (total score 13)	RCT	37	NA	12 weeks	Supplem ents	6mg lutein	Range depending on visual angle (+0.07 - +0.13)	Calculat ed =3.8% - 7.5%	Contrast sensitivit y P<0.01 - P<0.05
Yao et al 2013 (total score 9)	RCT	120	NA	1 year	Supplem ents	20mg lutein	Range depending on visual angle (+0.19 – +0.34)	Calculat ed =8.2- 19.3%	Mesophic and Photopic contrast sensitivit Y P<0.05
Sabour- Picket et al 2014 (total score 9)	RCT	67	Statistical power 79% was used	12 months	Supplem ents	20 mg lutein and 2 mg zeaxanthin	Range depending on visual angle (+18.8 letters - +27 letters)	Calculat ed =25.8%	contrast sensitivit y P=0.021
Huang et al 2015 (total score 14)	RCT		80% power to distinguish 30% difference for MPOD change in treatment groups	2 years	Supplem ents	10mg lutein + 10mg zeaxanthin	Depending on visual angle (+0.14 - +0.21)	Calculat ed =11.2% - 39.6%	Contrast sensitivit y P <0.05
Huang et al 2015 (total score 14)	RCT	108	AS above	2 years	Supplem ents	10mg lutein	At 3 cycles/degr ee: from 1.26±0.36 to 1.47±0.34 (+0.21)	Reporte d =16.1%	Contrast sensitivit y P <0.05

 Table 17: Summary of study findings from randomised controlled trials on contrast sensitivity

 Summary of study findings from intervention studies per health outcome

¹ If the study did not indicate an outcome for which it was powered, state N/A.

² Use Appendix B as a guide and include the Excel spreadsheet used to derive these calculations in an Appendix.

³ Reporting the magnitude of effect as a number and as a percentage may require computations by the petitioner. Use a system to differentiate the computed values *versus* those taken directly from the study - e.g., italicize all computed values.

⁴ For studies with a control/comparison group, report the effect as: (Mean end-of-treatment – Mean baseline)_{treatment group} – (Mean end-of-treatment – Mean baseline)_{control group}. For studies with a control/comparison group that do not report baseline values, report the effect as: Mean end-of-treatment_{treatment group} – Mean end-of-treatment_{control group}.

⁵ For studies with a control/comparison group, report the effect as: [(Mean end-of-treatment – Mean baseline)/Mean baseline]*100%_{treatment} group – [(Mean end-of-treatment – Mean baseline)/Mean baseline] *100%_{control group}. For studies with a control/comparison group that do not report baseline values, report the effect as: [(Mean end-of-treatment_{group} – Mean end-of-treatment_{control group})/Mean end-of-treatment_{control group}]*100%.

⁶ Report between-group p-values. If between-group p-values are not reported in the study, report within-group values and indicate that values apply to within-group analyses.

Overall, evidence from high quality observational cohort studies regarding intake of L/Z from diet and development of early, intermediate and late AMD is inconsistent. Some studies show favourable effects while others do not. This may be due to the nature of the studies, to residual confounding and/or the measurement and quantification of L/Z intake which likely biases findings towards the null (no effect). As noted, Wu et al 2015 took into account the bioavailability of L/Z in foods and found this strengthened the association between L/Z intake and advanced AMD. This is supported by other studies which show correlations between increased serum and/or ocular levels of these carotenoids and visual benefits that were excluded from this review because they did not quantify the level of L/Z intake in the diet^{45,46}.

Evidence from high quality intervention studies investigating the effect of L/Z supplementation on late AMD consistently demonstrate statistically significant favourable effects.

Evidence from high quality intervention studies investigating the effect of L/Z supplementation on visual performance consistently show statistically significant favourable effects of higher L/Z intake on contrast sensitivity. Evidence from high quality intervention studies investigating the effect of L/Z supplementation on visual performance consistently show favourable effects of higher L/Z intake on visual acuity in the direction of statistical significance. As discussed above, and further in the biological plausibility section, visual performance benefits have been linked to the increase in MPOD which accompanies L/Z dietary intake.

5.3 Biological Plausibility

The proposed food-health relationship between higher intakes of L/Z and the maintenance of vision is highly plausible from a biological perspective. As discussed in section 1.1, ocular concentrations of L/Z (referred to as macular pigment (MP^5)) have been shown to increase following increased intake of foods rich in these carotenoids^{6,7,12} or ingestion of L/Z supplements⁸⁻¹⁰. Dietary intakes of L/Z have also been associated with MPOD levels. More than two dozen studies have been published demonstrating an increase in macular carotenoids following L/Z supplementation of 2–30 mg per day or a high carotenoid diet⁴.

Importantly, some of the studies included in this review have indicated that MPOD levels need to have increased sufficiently before a benefit to vision will be evident. For example, results from Huang et al 2015 indicate that MPOD might be the foundation for the improvements in visual functions. Contrast sensitivity could only improve after MPOD had reached and maintained a relatively high level²². This hypothesis is supported by the positive correlation between changes in MPOD and improvements in

visual functions mentioned in other studies^{41,42} that did not meet the inclusion criteria for this systematic review. Furthermore, the findings from Weigert et al 2011 indicate that patients with a pronounced increase in MPOD (ie, those with low baseline levels) also improved their visual function³⁰.

Evidence, particularly from animal studies in rhesus monkeys, indicate that macular pigment (MP) provides photoprotection against damaging blue light⁴⁷. As well as their blue light filtration properties, L/Z act as antioxidants in the retina of the eye⁴⁸. There are three major hypotheses for the function of L and Z commonly proposed, i.e., the acuity, visibility, and protective hypotheses^{49,50}. These hypotheses are all based on the two fundamental characteristics of the MP, i.e., their light filtration and antioxidant characteristics^{48,51}. There is also accumulating evidence that lutein has anti-inflammatory properties⁵².

Blue light filtering properties:

Blue wavelengths have been shown to be more dangerous than longer wavelengths of visible light since they are more energetic and seem to be more efficient at generating reactive oxygen species⁴. The filtration of blue light reduces chromatic aberration which can enhance visual acuity and sensitivity⁵³.

Antioxidant properties:

Lutein and zeaxanthin act as antioxidants in the eye. The retina has a high potential for generation reactive oxygen species (ROS)⁵¹. In particular, the outer retina, especially membranes of the outer segments of the photoreceptors, has high concentrations of polyunsaturated fatty acids that are susceptible to photo-oxidation⁵¹. Carotenoids are potent scavengers of free radicals (e.g., superoxide anion and hydroxyl radical) and are particularly efficient at neutralizing singlet oxygen⁵⁴.

Anti-inflammatory properties:

Evidence from in vitro and animal models indicates that lutein may protect the retina from ischemic/hypoxic damage. Li et al 2012 suggested that less production of pro-inflammatory factors from Muller cells indicate an anti-inflammatory role of lutein in retinal ischemic/hypoxic injury⁵² and that lutein may contribute to preserved retinal function.

Overall, there is a growing and evidence-based consensus that MP is important for optimal visual performance because of its blue light-filtering properties and consequential attenuation of chromatic aberration, veiling luminance, and blue haze⁵⁵ as well as anti-oxidant³² and possibly anti-inflammatory actions⁵².

6. Applicability to Australia and New Zealand

S6-2 (f) An assessment of the results of the studies as a group considering whether: (iv) the amount of the food or property of food to achieve the health effect can be consumed as part of a normal diet of the Australian and New Zealand populations. S6-2 (g) A conclusion based on the results of the studies that includes:

(i) whether a causal relationship has been established between the food or property of food and the health effect based on the totality and weight of evidence; and

(ii) where there is a causal relationship between the food or property of food and the health effect:

(A) the amount of the food or property of food required to achieve the health effect
 (B) whether the amount of the food or property of food to achieve the health effect
 is likely to be consumed in the diet of the Australian and New Zealand populations or by
 the target population group, where relevant.

The amount of L/Z suggested to be of benefit for visual benefits ranges from $6mg^{56}$ but for vision maintenance and based on the results from some studies levels lower than this may offer come protection. In well conducted cohort studies, the highest percentile groupings of intake (~2.5-5mg/day), L/Z reduced the risk of early³⁵, and advanced AMD³⁶. Results from AREDS2³⁴ also suggests that intake levels of approximately 2000µg/day may be high enough to offer some protection given the results showed the bottom 20% of dietary intake of L/Z (<1428µg/day) benefitted from the supplement whereas those with higher dietary intakes (approximately ≥2060µg/day) did not see a statistically significant benefit from the 12mg LZ supplement.

Data on current intake levels of L/Z in the Australian and New Zealand population is limited. The average intake of older Australian adults participating in the Blue Mountains Eye study was 900µg per day, with women reporting slightly higher intakes than men⁵⁷. These numbers suggest the majority of Australians would benefit from increasing L/Z intakes. However the authors of this paper did acknowledge the incomplete food composition data they were using which may have underestimated carotenoid intakes⁵⁷. Average intake levels of L/Z from food up to 4800µg per day have been reported by US women, 45 years and over⁵⁸. In this study the lowest quintile of intake was 1200µg and the highest quintile of intake was 11 700µg suggesting that higher intake levels are achievable.

Furthermore, recent dietary modelling by Eisenhauer et al, 2017 demonstrated that L/Z intakes of >5mg and >10mg were achievable by consuming a carefully selected variety of commonly consumed foods containing L/Z⁵⁹.

Overall, while results from observational cohort studies to date have been inconsistent, the evidence from high quality intervention studies on late AMD and visual performance including contrast sensitivity and visual acuity consistently show favourable effects of L/Z on these health effects suggesting a causal effect. Furthermore, the relationship between L/Z and maintenance of vision has high biological plausibility and levels of intake are possible in the current Australian and New Zealand food environment.

In conclusion, this systematic review supports the food-health relationship that increasing dietary intake of lutein and zeaxanthin helps maintain vision (by both protecting from and slowing progression of eye disease) in adults. It is unlikely that further evidence in this area would alter these conclusions.

Appendix A Health Canada Quality Appraisal Checklists for Individual Studies

Intervention Studies

Question	Score	
		NO
	YES (1)	/NR(0)
Were the inclusion and exclusion criteria for study		
participation reported? (eg. Age greater than 50 years,		
no history of heart disease)?	1	
Was the study described as randomized?	1	
Was the randomization method reported?	1	
Was the randomization appropriate? ²	1	
Was the allocation concealed? ³		0
Were the study subjects blinded to the intervention		
received?	1	
Were the researcher personnel blinded to the		
intervention received by the subjects?	1	
Were attrition numerically reported?	1	
Were the reasons for withdrawals and dropouts		
provided? ⁴	1	
Was the type of food described (eg. Composition,		
matrix)?	1	
Was the amount of food described (i.e. dose)?	1	
Was the methodology used to measure the health effect		
reported?	1	
was between group statistical analysis of the health	1	
	1	
Was an intention-to-treat analysis conducted?	1	
were potential contounders of the food health	1	
	1	
	14	
(score 8-15)	Higher	
	inglief	
	QuestionWere the inclusion and exclusion criteria for study participation reported? (eg. Age greater than 50 years, no history of heart disease)?Was the study described as randomized?Was the study described as randomized?Was the randomization method reported?Was the randomization appropriate?2Was the allocation concealed?3Were the study subjects blinded to the intervention received?Were the researcher personnel blinded to the intervention received by the subjects?Were the reasons for withdrawals and dropouts provided?4Was the amount of food described (i.e. dose)?Was the methodology used to measure the health effect reported?Was an intention-to-treat analysis of the health effect reported?Was an intention-to-treat analysis conducted?5Were potential confounders of the food health relationship considered?6(score 8-15)	QuestionScoreYES (1)Were the inclusion and exclusion criteria for study participation reported? (eg. Age greater than 50 years, no history of heart disease)?Was the study described as randomized?Was the study described as randomized?Was the randomization method reported?Was the randomization appropriate?2Was the allocation concealed?3Were the study subjects blinded to the intervention received?Were the researcher personnel blinded to the intervention received by the subjects?Were the reasons for withdrawals and dropouts provided?4Was the amount of food described (i.e. dose)?Was the methodology used to measure the health effect reported?Was between group statistical analysis of the health effect reported?Was an intention-to-treat analysis conducted?5Were potential confounders of the food health relationship considered?6Higher

Reference: Huang et al 2015

*Notes:; NR=Not reported ¹Studies without an appropriate control group would be excluded at Step of applying inclusion and exclusion criteria ² Examples of appropriate randomization include the use of computer-generated random number table, while date of birth and alternate allocation are examples of inappropriate methods of randomization.

³ Allocation concealment is not the same as blinding. Allocation concealment refers to the method used to implement the random allocation sequence, e.g. numbered envelopes containing assignment. It protects the assignment sequence before and until allocation. Blinding protects the sequence after subjects have been allocated.

⁴ If the study reported no attrition (i.e. no subjects were lost to follow up, withdrew or were excluded) then reasons for withdrawal/dropouts is a "non-applicable" factor. In such circumstances, check 'YES' so as to not unfairly lose a point.

⁵ If there was no subject attrition, a per-protocol analysis is appropriate and an intention-to-treat analysis not applicable. In such a case, check 'YES' so as to not unfairly lose a point.⁶ Confounding could have occurred during subject selection, study conduct or data analysis. If randomization is successful and between groups differences that may have occurred during study conduct are considered during statistical analysis, then confounders were considered.

Reference: Bovier & Hammond, 2015

ltem	Question	Score	
		YES (1)	NO /NR(0)
1. Inclusion/exclusion	Were the inclusion and exclusion criteria for study participation reported? (eg. Age greater than 50 years,		
criteria	no history of heart disease)?		0
2. Group allocation ¹	Was the study described as randomized?	1	
	Was the randomization method reported?		0
	Was the randomization appropriate? ²		0
	Was the allocation concealed? ³		0
3. Blinding	Were the study subjects blinded to the intervention received?	1	
	Were the researcher personnel blinded to the intervention received by the subjects?	1	
4. Attrition	Were attrition numerically reported?	1	
	Were the reasons for withdrawals and dropouts provided? ⁴	1	
5. Exposure/intervention	Was the type of food described (eg. Composition, matrix)?	1	
	Was the amount of food described (i.e. dose)?	1	
6. Health effect	Was the methodology used to measure the health effect reported?	1	
7. Statistical analysis	Was between group statistical analysis of the health effect reported?	1	
	Was an intention-to-treat analysis conducted? ⁵	1	
8. Potential confounders	Were potential confounders of the food health relationship considered? ⁶		0
TOTAL SCORE (maximum of 15)		10	
Higher quality	(score 8-15)	Higher	
Lower quality	(score 0-7)		

Reference: Sabour-Pickett, 2014

Item	Question	Score	
			NO
		YES (1)	/NR(0)
	Were the inclusion and exclusion criteria for study		
1. Inclusion/exclusion	participation reported? (eg. Age greater than 50 years,		
criteria	no history of heart disease)?	1	
2. Group allocation ¹	Was the study described as randomized?	1	
	Was the randomization method reported?		0
	Was the randomization appropriate? ²		0
	Was the allocation concealed? ³		0

	Were the study subjects blinded to the intervention		
3. Blinding	received?	1	
	Were the researcher personnel blinded to the		
	intervention received by the subjects?		0
4. Attrition	Were attrition numerically reported?	1	
	Were the reasons for withdrawals and dropouts		
	provided? ⁴	1	
	Was the type of food described (eg. Composition,		
5. Exposure/intervention	matrix)?	1	
	Was the amount of food described (i.e. dose)?	1	
	Was the methodology used to measure the health effect		
6. Health effect	reported?	1	
	Was between group statistical analysis of the health		
7. Statistical analysis	effect reported?		0
	Was an intention-to-treat analysis conducted? ⁵		0
	Were potential confounders of the food health		
8. Potential confounders	relationship considered? ⁶	1	
TOTAL SCORE (maximum			
of 15)		9	
Higher quality	(score 8-15)	Higher	
Lower quality	(score 0-7)		

Reference: AREDS2 (Chew), 2014

Item	Question	Score	
			NO
		YES (1)	/NR(0)
	Were the inclusion and exclusion criteria for study		
1. Inclusion/exclusion	participation reported? (eg. Age greater than 50 years,		
criteria	no history of heart disease)?	1	
2. Group allocation ¹	Was the study described as randomized?	1	
	Was the randomization method reported?		0
	Was the randomization appropriate? ²		0
	Was the allocation concealed? ³		0
	Were the study subjects blinded to the intervention		
3. Blinding	received?	1	
	Were the researcher personnel blinded to the		
	intervention received by the subjects?	1	
4. Attrition	Were attrition numerically reported?	1	
	Were the reasons for withdrawals and dropouts		
	provided? ⁴	1	
	Was the type of food described (eg. Composition,		
5. Exposure/intervention	matrix)?	1	
	Was the amount of food described (i.e. dose)?	1	

	Was the methodology used to measure the health effect		
6. Health effect	reported?	1	
	Was between group statistical analysis of the health		
7. Statistical analysis	effect reported?	1	
	Was an intention-to-treat analysis conducted? ⁵	1	
	Were potential confounders of the food health		
8. Potential confounders	relationship considered? ⁶	1	
TOTAL SCORE (maximum			
of 15)		12	
Higher quality	(score 8-15)	Higher	
Lower quality	(score 0-7)		

Reference: AREDS2, 2013

Item	Question	Score	
			NO
		YES (1)	/NR(0)
	Were the inclusion and exclusion criteria for study		
1. Inclusion/exclusion	participation reported? (eg. Age greater than 50 years,		
criteria	no history of heart disease)?	1	
2. Group allocation ¹	Was the study described as randomized?	1	
	Was the randomization method reported?		0
	Was the randomization appropriate? ²		0
	Was the allocation concealed? ³		0
	Were the study subjects blinded to the intervention		
3. Blinding	received?	1	
	Were the researcher personnel blinded to the		
	intervention received by the subjects?	1	
4. Attrition	Were attrition numerically reported?	1	
	Were the reasons for withdrawals and dropouts		
	provided? ⁴	1	
	Was the type of food described (eg. Composition,		
5. Exposure/intervention	matrix)?	1	
	Was the amount of food described (i.e. dose)?	1	
	Was the methodology used to measure the health effect		
6. Health effect	reported?	1	
	Was between group statistical analysis of the health		
7. Statistical analysis	effect reported?	1	
	Was an intention-to-treat analysis conducted? ⁵	1	
	Were potential confounders of the food health		
8. Potential confounders	relationship considered? ⁶	1	
TOTAL SCORE (maximum			
of 15)		12	
Higher quality	(score 8-15)	Higher	

Lower quality (score 0-7)

Reference: Richer, 2011

Item	Question	Score	
		YES (1)	NO /NR(0)
1. Inclusion/exclusion	Were the inclusion and exclusion criteria for study participation reported? (eg. Age greater than 50 years,		
criteria	no history of heart disease)?	1	
2. Group allocation ¹	Was the study described as randomized?	1	
	Was the randomization method reported?	1	
	Was the randomization appropriate? ²	1	
	Was the allocation concealed? ³	1	
3. Blinding	Were the study subjects blinded to the intervention received?	1	
	Were the researcher personnel blinded to the intervention received by the subjects?	1	
4. Attrition	Were attrition numerically reported?	1	
	Were the reasons for withdrawals and dropouts provided? ⁴	1	
5. Exposure/intervention	Was the type of food described (eg. Composition, matrix)?	1	
	Was the amount of food described (i.e. dose)?	1	
6. Health effect	Was the methodology used to measure the health effect reported?	1	
7. Statistical analysis	Was between group statistical analysis of the health effect reported?	1	
	Was an intention-to-treat analysis conducted? ⁵	1	
8. Potential confounders	Were potential confounders of the food health relationship considered? ⁶	1	
TOTAL SCORE (maximum of 15)		15	
Higher quality	(score 8-15)	Higher	
Lower quality	(score 0-7)		

Reference: Weigert et al, 2011

Item	Question	Score	
		YES (1)	NO /NR(0)
1. Inclusion/exclusion	Were the inclusion and exclusion criteria for study participation reported? (eg. Age greater than 50 years,		
criteria	no history of heart disease)?	1	
2. Group allocation ¹	Was the study described as randomized?	1	
	Was the randomization method reported?		0
	Was the randomization appropriate? ²		0
	Was the allocation concealed? ³		0
3. Blinding	Were the study subjects blinded to the intervention received?	1	
	Were the researcher personnel blinded to the intervention received by the subjects?	1	
4. Attrition	Were attrition numerically reported?	1	
	Were the reasons for withdrawals and dropouts provided? ⁴	1	
5. Exposure/intervention	Was the type of food described (eg. Composition, matrix)?	1	
	Was the amount of food described (i.e. dose)?	1	
6. Health effect	Was the methodology used to measure the health effect reported?	1	
7. Statistical analysis	Was between group statistical analysis of the health effect reported?	1	
	Was an intention-to-treat analysis conducted? ⁵		0
8. Potential confounders	Were potential confounders of the food health relationship considered? ⁶	1	
TOTAL SCORE (maximum of 15)		11	
Higher quality	(score 8-15)	Higher	
Lower quality	(score 0-7)		

Reference: Ma et al, 2009

Item	Question	Score	
			NO
		YES (1)	/NR(0)
	Were the inclusion and exclusion criteria for study		
1. Inclusion/exclusion	participation reported? (eg. Age greater than 50 years,		
criteria	no history of heart disease)?	1	
2. Group allocation ¹	Was the study described as randomized?	1	
	Was the randomization method reported?	1	
	Was the randomization appropriate? ²		0
	Was the allocation concealed? ³		0
	Were the study subjects blinded to the intervention		
3. Blinding	received?	1	

	Were the researcher personnel blinded to the	1	
		1	
4. Attrition	Were attrition numerically reported?	1	
	Were the reasons for withdrawals and dropouts		
	provided? ⁴	1	
	Was the type of food described (eg. Composition,		
5. Exposure/intervention	matrix)?	1	
	Was the amount of food described (i.e. dose)?	1	
	Was the methodology used to measure the health effect		
6. Health effect	reported?	1	
	Was between group statistical analysis of the health		
7. Statistical analysis	effect reported?	1	
	Was an intention-to-treat analysis conducted? ⁵	1	
	Were potential confounders of the food health		
8. Potential confounders	relationship considered? ⁶	1	
TOTAL SCORE (maximum			
of 15)		13	
Higher quality	(score 8-15)	Higher	
Lower quality	(score 0-7)		

Reference: Yao et al, 2013

Item	Question	Score	
			NO
		YES (1)	/NR(0)
	Were the inclusion and exclusion criteria for study		
1. Inclusion/exclusion	participation reported? (eg. Age greater than 50 years,		
criteria	no history of heart disease)?	1	
2. Group allocation ¹	Was the study described as randomized?	1	
	Was the randomization method reported?		0
	Was the randomization appropriate? ²		0
	Was the allocation concealed? ³		0
	Were the study subjects blinded to the intervention		
3. Blinding	received?	1	
	Were the researcher personnel blinded to the		
	intervention received by the subjects?	1	
4. Attrition	Were attrition numerically reported?		0
	Were the reasons for withdrawals and dropouts		
	provided? ⁴		0
	Was the type of food described (eg. Composition,		
5. Exposure/intervention	matrix)?	1	
	Was the amount of food described (i.e. dose)?	1	
	Was the methodology used to measure the health effect		
6. Health effect	reported?	1	
	Was between group statistical analysis of the health		
7. Statistical analysis	effect reported?	1	
	Was an intention-to-treat analysis conducted? ⁵		0

	Were potential confounders of the food health		
8. Potential confounders	relationship considered? ⁶	1	
TOTAL SCORE (maximum			
of 15)		9	
Higher quality	(score 8-15)	Higher	
Lower quality	(score 0-7)		

Cohort Studies

Table 13b. Quality appraisal tool for prospective observational studies						
Assign a score of 1 for each "Yes", and a score of 0 for each "No/NR".						
Reference (Author, year): Flood, 2002						
Item	Question	Score				
		Yes	No/N R			
1. Inclusion/ Exclusion Criteria	Were the inclusion and/or exclusion criteria for study participation reported (<i>e.g.</i> , age greater than 50 years, no history of heart disease)?	1				
2. Attrition	Was attrition numerically reported?	1				
	Were the reasons for withdrawals and dropouts provided? ¹	1				
3. Exposure	Was the methodology used to measure the exposure reported?	1				
	Was the exposure assessed more than once?		No			
4. Health Outcome	Was the methodology used to measure the health outcome reported?	1				
	Was the health outcome verified (<i>e.g.</i> , through assessment of medical records, confirmation by a health professional)?	1				
5. Blinding	Were the outcome assessors blinded to the exposure status?		NR			
6. Baseline Comparability of groups	Were the subjects in the different exposure levels compared at baseline?		No			
7. Statistical Analysis	Was the statistical significance of the trend reported?	1				
8. Potential Confounders	Were key confounders related to subjects' demographics accounted for in the statistical analysis? ^{2,3}	1				
	Were key confounders related to other risk factors of the health outcome accounted for in the statistical analysis? ^{2,4}	1				
TOTAL SCORE (maximum of 12):			9			
Higher quality (Score ≥ 7)		X				
Lower quality (Score ≤ 6)						

Abbreviation: NR, not reported ¹ If the study reported no attrition, (*i.e.*, no subjects were lost to follow-up, withdrew or were excluded) then reasons for withdrawals/dropouts is a "non-applicable" factor. In such a circumstance, please check "yes" so as to not unfairly lose a point.

² Confounders considered in this study: Age, gender, family hisotry of ARM, and smoking status.

³ Confounders related to subjects' demographics accounted for in statistical analysis: age and gender.

⁴ Confounders related to other risk factors of the health outcome accounted for in the statistical analysis were smoking and family history of age-related maculopathy.

Table 13b. Quality appraisal tool for prospective observational studies						
Assign a score of 1 for each "Yes", and a score of 0 for each "No/NR".						
Reference (Author, year): Van Leeuwen 2005						
Item	Question	Score				
		Yes	No/N R			
1. Inclusion/ Exclusion Criteria	Were the inclusion and/or exclusion criteria for study participation reported (<i>e.g.</i> , age greater than 50 years, no history of heart disease)?	1				
2. Attrition	Was attrition numerically reported?	1				
	Were the reasons for withdrawals and dropouts provided? ¹	1				
3. Exposure	Was the methodology used to measure the exposure reported?	1				
	Was the exposure assessed more than once?	1				
4. Health Outcome	Was the methodology used to measure the health outcome reported?	1				
	Was the health outcome verified (<i>e.g.</i> , through assessment of medical records, confirmation by a health professional)?		NR			
5. Blinding	Were the outcome assessors blinded to the exposure status?	1				
6. Baseline Comparability of groups	Were the subjects in the different exposure levels compared at baseline?		NR			
7. Statistical Analysis	Was the statistical significance of the trend reported?	1				
8. Potential Confounders	Were key confounders related to subjects' demographics accounted for in the statistical analysis? ^{2,3}	1				
	Were key confounders related to other risk factors of the health outcome accounted for in the statistical analysis? ^{2,4}	1				
TOTAL SCORE (maximum of 12):		11				
Higher quality (Score ≥ 7)		X				
Lower quality (Score ≤ 6)						

Abbreviation: NR, not reported

³ Confounders related to subjects' demographics accounted for in statistical analysis: age and gender.

⁴ Confounders related to other risk factors of the health outcome accounted for in the statistical analysis were smoking, alcohol intake, body mass index (BMI), total cholesterol, atherosclerosis score.

¹ If the study reported no attrition, (*i.e.*, no subjects were lost to follow-up, withdrew or were excluded) then reasons for withdrawals/dropouts is a "non-applicable" factor. In such a circumstance, please check "yes" so as to not unfairly lose a point.

² Confounders considered in this study: smoking status, number of pack-years, serum total cholesterol, blood pressure, carotid intimamedia thickness and atherosclertic plaques was collected at baseline.

Table 13b. Quality appraisal tool for prospective observational studies						
Assign a score of 1 for each "Yes", and a score of 0 for each "No/NR".						
Reference (Author, year): Cho 2008						
Item	Question	Score				
		Yes	No/N R			
1. Inclusion/ Exclusion Criteria	Were the inclusion and/or exclusion criteria for study participation reported (e.g., age greater than 50 years, no history of heart disease)?	1				
2. Attrition	Was attrition numerically reported?	1				
	Were the reasons for withdrawals and dropouts provided? ¹	1				
3. Exposure	Was the methodology used to measure the exposure reported?	1				
	Was the exposure assessed more than once?	1				
4. Health Outcome	Was the methodology used to measure the health outcome reported?	1				
	Was the health outcome verified (<i>e.g.</i> , through assessment of medical records, confirmation by a health professional)?	1				
5. Blinding	Were the outcome assessors blinded to the exposure status?		NR			
6. Baseline Comparability of groups	Were the subjects in the different exposure levels compared at baseline?	1				
7. Statistical Analysis	Was the statistical significance of the trend reported?	1				
8. Potential Confounders	Were key confounders related to subjects' demographics accounted for in the statistical analysis? ^{2,3}	1				
	Were key confounders related to other risk factors of the health outcome accounted for in the statistical analysis? ^{2,4}	1				
TOTAL SCORE (maximum of 12):		11				
Higher quality (Score ≥ 7)			Х			
Lower quality (Score ≤ 6)						

Abbreviation: NR, not reported ¹ If the study reported no attrition, (*i.e.*, no subjects were lost to follow-up, withdrew or were excluded) then reasons for withdrawals/dropouts is a "non-applicable" factor. In such a circumstance, please check "yes" so as to not unfairly lose a point.

² Confounders considered in this study: age, lutein/zeaxanthin intake, smoking status, BMI, alcohol intake and fish intake.

³ Confounders related to subjects' demographics accounted for in the statistical analysis were age.

⁴ Confounders related to other risk factors of the health outcome accounted for in the statistical analysis were smoking, energy intake, alcohol intake, fish intake, BMI, postmenopausal hormone use in women.
Table 13b. Q	uality appraisal tool for prospective observational studies		
Assign a score of	1 for each "Yes", and a score of 0 for each "No/NR".		
Reference (Autho	or, year): Tan 2008		
Item	Question	Score	
		Yes	No/N R
1. Inclusion/ Exclusion Criteria	Were the inclusion and/or exclusion criteria for study participation reported (<i>e.g.</i> , age greater than 50 years, no history of heart disease)?	1	
2. Attrition	Was attrition numerically reported?	1	
	Were the reasons for withdrawals and dropouts provided?1	1	
3. Exposure	Was the methodology used to measure the exposure reported?	1	
	Was the exposure assessed more than once?		No
4. Health Outcome	Was the methodology used to measure the health outcome reported?	1	
	Was the health outcome verified (<i>e.g.</i> , through assessment of medical records, confirmation by a health professional)?	1	
5. Blinding	Were the outcome assessors blinded to the exposure status?		NR
6. Baseline Comparability of groups	Were the subjects in the different exposure levels compared at baseline?		NR
7. Statistical Analysis	Was the statistical significance of the trend reported?	1	
8. Potential Confounders	Were key confounders related to subjects' demographics accounted for in the statistical analysis? ^{2,3}	1	
	Were key confounders related to other risk factors of the health outcome accounted for in the statistical analysis? ^{2,4}	1	
TOTAL SCORE (maximum of 12):			9
Higher quality (Score ≥ 7)		Х	
Lower quality (Score ≤ 6)		[

Abbreviation: NR, not reported

¹ If the study reported no attrition, (*i.e.*, no subjects were lost to follow-up, withdrew or were excluded) then reasons for withdrawals/dropouts is a "non-applicable" factor. In such a circumstance, please check "yes" so as to not unfairly lose a point.

² Confounders considered in this study: demographic information; family history; medications taken; self-reported diagnoses of diabetes, acute myocardial infarction, angina, or stroke; and smoking history, Fasting blood specimens were collected and diabetes was diagnosed either from medical history or fasting blood glucose; energy intake.

³ Confounders related to subjects' demographics accounted for in the statistical analysis were age.

⁴ Confounders related to other risk factors of the health outcome accounted for in the statistical analysis were smoking, family history of age-related macula degeneration, job prestige, white cell count.

Table 13b. Q	uality appraisal tool for prospective observational studies		
Assign a score of	1 for each "Yes", and a score of 0 for each "No/NR".		
Reference (Author, year): Ho, 2011			
Item	Question	Score	
		Yes	No/N R
1. Inclusion/ Exclusion Criteria	Were the inclusion and/or exclusion criteria for study participation reported (e.g., age greater than 50 years, no history of heart disease)?	1	
2. Attrition	Was attrition numerically reported?	1	
	Were the reasons for withdrawals and dropouts provided? ¹	1	
3. Exposure	Was the methodology used to measure the exposure reported?	1	
	Was the exposure assessed more than once?	1	
4. Health Outcome	Was the methodology used to measure the health outcome reported?	1	
	Was the health outcome verified (<i>e.g.</i> , through assessment of medical records, confirmation by a health professional)?		NR
5. Blinding	Were the outcome assessors blinded to the exposure status?		NR
6. Baseline Comparability of groups	Were the subjects in the different exposure levels compared at baseline?		NR
7. Statistical Analysis	Was the statistical significance of the trend reported?	1	
8. Potential Confounders	Were key confounders related to subjects' demographics accounted for in the statistical analysis? ^{2,3}	1	
	Were key confounders related to other risk factors of the health outcome accounted for in the statistical analysis? ^{2,4}	1	
TOTAL SCORE (maximum of 12):			9
Higher quality (Score ≥ 7)		Х	
Lower quality (Score ≤ 6)			

Abbreviation: NR, not reported ¹ If the study reported no attrition, (*i.e.*, no subjects were lost to follow-up, withdrew or were excluded) then reasons for withdrawals/dropouts is a "non-applicable" factor. In such a circumstance, please check "yes" so as to not unfairly lose a point.

² Confounders considered in this study: gender, BMI, smoking status, blood pressure, serum lipids, atherosclerosis composite score dietary intake (total energy, alcohol, milk, meat, fish, fruit and vegetable),age, diabetes mellitus, CFHY402H and LOC387715 A69S.

³ Confounders related to subjects' demographics accounted for in the statistical analysis were age and gender.

⁴ Confounders related to other risk factors of the health outcome accounted for in the statistical analysis were smoking and atherosclerosis.

Table 13b. Q	uality appraisal tool for prospective observational studies		
Assign a score of	1 for each "Yes", and a score of 0 for each "No/NR".		
Reference (Autho	or, year): Wang, 2014		
Item	Question	Score	
		Yes	No/N R
1. Inclusion/ Exclusion Criteria	Were the inclusion and/or exclusion criteria for study participation reported (<i>e.g.</i> , age greater than 50 years, no history of heart disease)?	1	
2. Attrition	Was attrition numerically reported?	1	
	Were the reasons for withdrawals and dropouts provided? ¹	1	
3. Exposure	Was the methodology used to measure the exposure reported?	1	
	Was the exposure assessed more than once?	1	
4. Health Outcome	Was the methodology used to measure the health outcome reported?	1	
	Was the health outcome verified (<i>e.g.</i> , through assessment of medical records, confirmation by a health professional)?	1	
5. Blinding	Were the outcome assessors blinded to the exposure status?		NR
6. Baseline Comparability of groups	Were the subjects in the different exposure levels compared at baseline?		NR
7. Statistical Analysis	Was the statistical significance of the trend reported?	1	
8. Potential Confounders	Were key confounders related to subjects' demographics accounted for in the statistical analysis? ^{2,3}	1	
	Were key confounders related to other risk factors of the health outcome accounted for in the statistical analysis? ^{2,4}	1	
TOTAL SCORE (maximum of 12):		10	
Higher quality (Score ≥ 7)		Х	
Lower quality (Score ≤ 6)			

Abbreviation: NR, not reported ¹ If the study reported no attrition, (*i.e.*, no subjects were lost to follow-up, withdrew or were excluded) then reasons for withdrawals/dropouts is a "non-applicable" factor. In such a circumstance, please check "yes" so as to not unfairly lose a point.

² Confounders considered in this study: age, sex, smoking status and study sit, energy and main macronutrient intake of participants.

³ Confounders related to subjects' demographics accounted for in the statistical analysis were age and gender.

⁴ Confounders related to other risk factors of the health outcome accounted for in the statistical analysis were energy intake, smoking, study site.

.

Table 13b. Q	uality appraisal tool for prospective observational studies		
Assign a score of	1 for each "Yes", and a score of 0 for each "No/NR".		
Reference (Author, year): Wu 2015			
Item	Question	Score	
		Yes	No/N R
1. Inclusion/ Exclusion Criteria	Were the inclusion and/or exclusion criteria for study participation reported (e.g., age greater than 50 years, no history of heart disease)?	1	
2. Attrition	Was attrition numerically reported?	1	
	Were the reasons for withdrawals and dropouts provided? ¹	1	
3. Exposure	Was the methodology used to measure the exposure reported?	1	
	Was the exposure assessed more than once?	1	
4. Health Outcome	Was the methodology used to measure the health outcome reported?	1	
	Was the health outcome verified (<i>e.g.</i> , through assessment of medical records, confirmation by a health professional)?	1	
5. Blinding	Were the outcome assessors blinded to the exposure status?		NR
6. Baseline Comparability of groups	Were the subjects in the different exposure levels compared at baseline?	1	
7. Statistical Analysis	Was the statistical significance of the trend reported?	1	
8. Potential Confounders	Were key confounders related to subjects' demographics accounted for in the statistical analysis? ^{2,3}	1	
	Were key confounders related to other risk factors of the health outcome accounted for in the statistical analysis? ^{2,4}	1	
TOTAL SCORE (maximum of 12):		11	
Higher quality (Score ≥ 7)		Х	
Lower quality (Score ≤ 6)			

Abbreviation: NR, not reported

¹ If the study reported no attrition, (*i.e.*, no subjects were lost to follow-up, withdrew or were excluded) then reasons for withdrawals/dropouts is a "non-applicable" factor. In such a circumstance, please check "yes" so as to not unfairly lose a point.

² Confounders considered in this study: Age, BMI, smoking status, pack-years of smoking, physical activity,

hypertension, current aspirin use, alcohol intake were measured. Suspected risk factors such as an alternative healthy eating index, an indicator of a healthy dietary pattern.

³ Confounders related to subjects' demographics accounted for in the statistical analysis were age (in NHS cohort); age and ethnicity (in HPFS cohort).

⁴ Confounders related to other risk factors of the health outcome accounted for in the statistical analysis were smoking, body mass index (BMI), smoking, physical activity, healthy eating index, alcohol intake, DHA and ALA intake, hypertension, diabetes mellitus, postmenopausal status, aspirin use.

Table 13b. Q	uality appraisal tool for prospective observational studies		
Assign a score of	1 for each "Yes", and a score of 0 for each "No/NR".		
Reference (Autho	or, year): Lin 2017		
Item	Question	Score	
		Yes	No/N R
1. Inclusion/ Exclusion Criteria	Were the inclusion and/or exclusion criteria for study participation reported (<i>e.g.</i> , age greater than 50 years, no history of heart disease)?	1	
2. Attrition	Was attrition numerically reported?	1	
	Were the reasons for withdrawals and dropouts provided? ¹	1	
3. Exposure	Was the methodology used to measure the exposure reported?	1	
	Was the exposure assessed more than once?	1	
4. Health Outcome	Was the methodology used to measure the health outcome reported?	1	
	Was the health outcome verified (<i>e.g.</i> , through assessment of medical records, confirmation by a health professional)?		No
5. Blinding	Were the outcome assessors blinded to the exposure status?	1	
6. Baseline Comparability of groups	Were the subjects in the different exposure levels compared at baseline?	1	
7. Statistical Analysis	Was the statistical significance of the trend reported?	1	
8. Potential Confounders	Were key confounders related to subjects' demographics accounted for in the statistical analysis? ^{2,3}	1	
	Were key confounders related to other risk factors of the health outcome accounted for in the statistical analysis? ^{2,4}	1	
TOTAL SCORE (maximum of 12):		11	
Higher quality (Score ≥ 7)		Х	
Lower quality (Score ≤ 6)		[

Abbreviation: NR, not reported ¹ If the study reported no attrition, (*i.e.*, no subjects were lost to follow-up, withdrew or were excluded) then reasons for withdrawals/dropouts is a "non-applicable" factor. In such a circumstance, please check "yes" so as to not unfairly lose a point.

² Confounders considered in this study Age, sex, race and pack-years of smoking were determined to be included in the multivariable model a priori. A factor was included as a confounder if it were associated with both LZ intake and prevalent AMD at p<0.20, and changed the OR 10% after adjustment. ³ Confounders related to subjects' demographics accounted for in the statistical analysis were age, gender and ethnicity.

⁴ Confounders related to other risk factors of the health outcome accounted for in the statistical analysis were smoking, field center, energy intake.

- 1. Perry, A., Rasmussen, H. & Johnson, E. Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. *Journal of Food Composition and Analysis* **22**, 9-15 (2009).
- 2. M. Abdel-Aal, E.-S., Akhtar, H., R. Chambers, J. & Zaheer, K. *Lutein and Zeaxanthin Carotenoids in Eggs*, (2017).
- 3. US Department of Agriculture, A.R.S., Nutrient Data Laboratory. . USDA National Nutrient Database for Standard Reference, Release 27. . (2014).
- 4. Bernstein, P.S., Delori, F.C., Richer, S., van Kuijk, F.J. & Wenzel, A.J. The value of measurement of macular carotenoid pigment optical densities and distributions in age-related macular degeneration and other retinal disorders. *Vision Res* **50**, 716-728 (2010).
- 5. Loskutova, E., Nolan, J., Howard, A. & Beatty, S. Macular pigment and its contribution to vision. *Nutrients* **5**, 1962-1969 (2013).
- 6. Hammond, B.R., Jr., *et al.* Dietary modification of human macular pigment density. *Invest Ophthalmol Vis Sci* **38**, 1795-1801 (1997).
- 7. Wenzel, A.J., *et al.* A 12-wk egg intervention increases serum zeaxanthin and macular pigment optical density in women. *J Nutr* **136**, 2568-2573 (2006).
- 8. Bone, R.A., Landrum, J.T., Guerra, L.H. & Ruiz, C.A. Lutein and zeaxanthin dietary supplements raise macular pigment density and serum concentrations of these carotenoids in humans. *J Nutr* **133**, 992-998 (2003).
- 9. Rosenthal, J.M., *et al.* Dose-ranging study of lutein supplementation in persons aged 60 years or older. *Invest Ophthalmol Vis Sci* **47**, 5227-5233 (2006).
- 10. Landrum, J.T., *et al.* A one year study of the macular pigment: the effect of 140 days of a lutein supplement. *Exp Eye Res* **65**, 57-62 (1997).
- Handelman, G.J., Nightingale, Z.D., Lichtenstein, A.H., Schaefer, E.J. & Blumberg, J.B. Lutein and zeaxanthin concentrations in plasma after dietary supplementation with egg yolk. *Am J Clin Nutr* **70**, 247-251 (1999).
- 12. Johnson, E.J. The role of carotenoids in human health. *Nutr Clin Care* **5**, 56-65 (2002).
- 13. Rich, G.T., Faulks, R.M., Wickham, M.S. & Fillery-Travis, A. Solubilization of carotenoids from carrot juice and spinach in lipid phases: II. Modeling the duodenal environment. *Lipids* **38**, 947-956 (2003).
- 14. Rich, G.T., *et al.* Solubilization of carotenoids from carrot juice and spinach in lipid phases: I. Modeling the gastric lumen. *Lipids* **38**, 933-945 (2003).
- 15. Hornero-Mendez, D. & MI., M.-M. Bioaccessibility of carotenes from carrots: Effect of cooking and addition of oil. *Innovative Food Science & Emerging Technologies* **8**, 407-412 (2007).
- 16. Goodrow, E.F., *et al.* Consumption of One Egg Per Day Increases Serum Lutein and Zeaxanthin Concentrations in Older Adults without Altering Serum Lipid and Lipoprotein Cholesterol Concentrations. *J Nutr* **136**, 2519-2524 (2006).
- 17. Blesso, C.N., Andersen, C.J., Bolling, B.W. & Fernandez, M.L. Egg intake improves carotenoid status by increasing plasma HDL cholesterol in adults with metabolic syndrome. *Food Funct* **4**, 213-221 (2013).
- 18. DiMarco, D.M., Norris, G.H., Millar, C.L., Blesso, C.N. & Fernandez, M.L. Intake of up to 3 Eggs per Day Is Associated with Changes in HDL Function and Increased Plasma Antioxidants in Healthy, Young Adults. *J Nutr* [Epud ahead of print](2017).
- 19. Kelly, E.R., Plat, J., Haenen, G.R., Kijlstra, A. & Berendschot, T.T. The effect of modified eggs and an egg-yolk based beverage on serum lutein and zeaxanthin concentrations and macular pigment optical density: results from a randomized trial. *PLoS ONE* **9**, e92659 (2014).

- 20. Kelly, D., *et al.* Serum and macular response to carotenoid-enriched egg supplementation in human subjects: the Egg Xanthophyll Intervention clinical Trial (EXIT). *Br J Nutr* **117**, 108-123 (2017).
- 21. Chung, H.Y., Rasmussen, H.M. & Johnson, E.J. Lutein bioavailability is higher from luteinenriched eggs than from supplements and spinach in men. *J Nutr* **134**, 1887-1893 (2004).
- 22. Huang, Y.M., *et al.* Effect of supplemental lutein and zeaxanthin on serum, macular pigmentation, and visual performance in patients with early age-related macular degeneration. *Biomed Res Int* **2015**, 564738 (2015).
- 23. Yao, Y., *et al.* Lutein supplementation improves visual performance in Chinese drivers: 1-year randomized, double-blind, placebo-controlled study. *Nutrition* **29**, 958-964 (2013).
- 24. Ma, L., *et al.* A 12-week lutein supplementation improves visual function in Chinese people with long-term computer display light exposure. *Br J Nutr* **102**, 186-190 (2009).
- 25. Bovier, E.R. & Hammond, B.R. A randomized placebo-controlled study on the effects of lutein and zeaxanthin on visual processing speed in young healthy subjects. *Arch Biochem Biophys* **572**, 54-57 (2015).
- 26. NIH. (2018).
- 27. Klein, R., *et al.* The Wisconsin age-related maculopathy grading system. *Ophthalmology* **98**, 1128-1134 (1991).
- 28. Bird, A.C., *et al.* An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group. *Surv Ophthalmol* **39**, 367-374 (1995).
- 29. Davis, M.D., *et al.* The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS Report No. 17. *Arch Ophthalmol* **123**, 1484-1498 (2005).
- 30. Weigert, G., *et al.* Effects of lutein supplementation on macular pigment optical density and visual acuity in patients with age-related macular degeneration. *Invest Ophthalmol Vis Sci* **52**, 8174-8178 (2011).
- 31. Richer, S.P., *et al.* Randomized, double-blind, placebo-controlled study of zeaxanthin and visual function in patients with atrophic age-related macular degeneration: the Zeaxanthin and Visual Function Study (ZVF) FDA IND #78, 973. *Optometry* **82**, 667-680 e666 (2011).
- 32. Sabour-Pickett, S., *et al.* Supplementation with three different macular carotenoid formulations in patients with early age-related macular degeneration. *Retina* **34**, 1757-1766 (2014).
- 33. Age-Related Eye Disease Study 2 Research, G., *et al.* Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: AREDS2 report No. 3. *JAMA Ophthalmol* **132**, 142-149 (2014).
- 34. Age-Related Eye Disease Study 2 Research, G. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. *JAMA* **309**, 2005-2015 (2013).
- 35. Ho, L., *et al.* Reducing the genetic risk of age-related macular degeneration with dietary antioxidants, zinc, and omega-3 fatty acids: the Rotterdam study. *Arch Ophthalmol* **129**, 758-766 (2011).
- 36. Wu, J., Cho, E., Willett, W.C., Sastry, S.M. & Schaumberg, D.A. Intakes of Lutein, Zeaxanthin, and Other Carotenoids and Age-Related Macular Degeneration During 2 Decades of Prospective Follow-up. *JAMA Ophthalmol* **133**, 1415-1424 (2015).
- 37. Lin, H., *et al.* Association between Dietary Xanthophyll (Lutein and Zeaxanthin) Intake and Early Age-Related Macular Degeneration: The Atherosclerosis Risk in Communities Study. *Ophthalmic Epidemiol* **24**, 311-322 (2017).
- 38. Tan, J.S., *et al.* Dietary antioxidants and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. *Ophthalmology* **115**, 334-341 (2008).

- 39. Tomany, S.C., *et al.* Risk factors for incident age-related macular degeneration: pooled findings from 3 continents. *Ophthalmology* **111**, 1280-1287 (2004).
- 40. Wang, J.J., *et al.* Genetic susceptibility, dietary antioxidants, and long-term incidence of agerelated macular degeneration in two populations. *Ophthalmology* **121**, 667-675 (2014).
- 41. Nolan, J.M., *et al.* The impact of macular pigment augmentation on visual performance in normal subjects: COMPASS. *Vision Res* **51**, 459-469 (2011).
- 42. Loughman, J., *et al.* The relationship between macular pigment and visual performance. *Vision Res* **50**, 1249-1256 (2010).
- 43. Flood, V., *et al.* Dietary antioxidant intake and incidence of early age-related maculopathy: the Blue Mountains Eye Study. *Ophthalmology* **109**, 2272-2278 (2002).
- 44. Zhang, X., *et al.* Carotenoid intakes and risk of breast cancer defined by estrogen receptor and progesterone receptor status: a pooled analysis of 18 prospective cohort studies. *Am J Clin Nutr* **95**, 713-725 (2012).
- 45. Michikawa, T., *et al.* Serum antioxidants and age-related macular degeneration among older Japanese. *Asia Pac J Clin Nutr* **18**, 1-7 (2009).
- 46. Fletcher, A.E., *et al.* Sunlight exposure, antioxidants, and age-related macular degeneration. *Arch Ophthalmol* **126**, 1396-1403 (2008).
- 47. Barker, F.M., 2nd, *et al.* Nutritional manipulation of primate retinas, V: effects of lutein, zeaxanthin, and n-3 fatty acids on retinal sensitivity to blue-light-induced damage. *Invest Ophthalmol Vis Sci* **52**, 3934-3942 (2011).
- 48. Jia, Y.P., *et al.* The Pharmacological Effects of Lutein and Zeaxanthin on Visual Disorders and Cognition Diseases. *Molecules* **22**(2017).
- 49. Wooten, B.R. & Hammond, B.R. Macular pigment: influences on visual acuity and visibility. *Prog Retin Eye Res* **21**, 225-240 (2002).
- 50. Reading, V.M. & Weale, R.A. Macular pigment and chromatic aberration. *J Opt Soc Am* **64**, 231-234 (1974).
- 51. Bernstein, P.S., *et al.* Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions in ocular disease. *Prog Retin Eye Res*, 34-66 (2016).
- 52. Li, S.Y., *et al.* Anti-inflammatory effects of lutein in retinal ischemic/hypoxic injury: in vivo and in vitro studies. *Invest Ophthalmol Vis Sci* **53**, 5976-5984 (2012).
- 53. Scripsema, N.K., Hu, D.N. & Rosen, R.B. Lutein, zeaxanthin and meso-zeaxanthin in the clinical management of eye disease. *J Ophthalmol* **2015**(2015).
- 54. Stahl, W. & Sies, H. Antioxidant defense: vitamins E and C and carotenoids. *Diabetes* **46 Suppl 2**, S14-18 (1997).
- 55. Hammond, B.R., Fletcher, L.M., Roos, F., Wittwer, J. & Schalch, W. A double-blind, placebocontrolled study on the effects of lutein and zeaxanthin on photostress recovery, glare disability, and chromatic contrast. *Invest Ophthalmol Vis Sci* **55**, 8583-8589 (2014).
- 56. Seddon, J.M., *et al.* Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. *JAMA* **272**, 1413-1420 (1994).
- 57. Manzi, F., Flood, V., Webb, K. & Mitchell, P. The intake of carotenoids in an older Australian population: The Blue Mountains Eye Study. *Public Health Nutr* **5**, 347-352 (2002).
- 58. Chasan-Taber, L., *et al.* A prospective study of carotenoid and vitamin A intakes and risk of cataract extraction in US women. *Am J Clin Nutr* **70**, 509-516 (1999).
- 59. Eisenhauer, B., Natoli, S., Liew, G. & Flood, V.M. Lutein and Zeaxanthin-Food Sources, Bioavailability and Dietary Variety in Age-Related Macular Degeneration Protection. *Nutrients* **9**(2017).